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Abstract

A number of authors have discussed the possible advantages of condition-
ing parameter distributions on observed choices when working with Mixed
Multinomial Logit models. However, the number of applications is still rel-
atively small, partly due to a limited implementation in available software.
To address this situation, the present paper discusses the development of a
freeware software tool that allows users to compute conditional distributions
independently of the software used during model estimation. Additionally,
the paper looks at what impact assumptions made for the unconditional
distributions have on the results obtained with conditional distributions.
Here, an application using stated choice data collected in Denmark shows
that while the move from unconditional to conditional distributions possibly
brings results closer together, some discrepancies do remain.

Keywords: mixed logit, discrete choice, conditional distributions, taste het-
erogeneity

1 Introduction

The random coefficients formulation of the Mixed Multinomial Logit (MMNL)
model (cf. Revelt and Train, 1998; Train, 1998; McFadden and Train, 2000; Hen-
sher and Greene, 2003; Train, 2003) is fast becoming one of the most widely used
econometric structures for the analysis of choice behaviour. The main advantage
of the MMNL model over its more simplistic closed-form counterparts is that it
allows for a relaxation of the assumption of constant marginal utility coefficients
across individuals.
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The MMNL model accommodates taste heterogeneity by allowing marginal
utility coefficients to be distributed randomly across respondents. A major issue
in this context is the choice of an appropriate mixing distribution in the absence
of information on the actual shape of that distribution in the sample population
(see for example Hensher and Greene 2003, Hess et al. 2005 and Fosgerau 2006).
The vast majority of MMNL applications make use of the Normal distribution.
Here, problems can arise due to the unbounded nature of the distribution, as well
as due to its symmetry assumption. These can lead to issues with sign violations
and biased mean values respectively. Indeed, it is in such situations not clear
whether the findings actually reflect real sensitivities present in the data or are
simply a result of the distributional assumptions. A possible solution is to use
more flexible distributions, not making a strict symmetry assumption, while also
allowing for the estimation (rather than imposition) of bounds to either side.
Examples of such distributions include the Johnson SB, discussed in detail in a
MMNL context by Train and Sonnier (2005).

A serious problem is that models making use of these more advanced distribu-
tions are considerably more difficult to estimate than their counterparts relying
on more restrictive distributions, often leading to issues with convergence or pa-
rameter significance. Another major issue with the MMNL model is that while it
allows the user to accommodate random taste heterogeneity in the sample pop-
ulation, it does not directly provide any information on the likely location of a
given respondent on this distribution. However, simply knowing that a coefficient
varies across respondents is only of limited practical use.

An obvious way of dealing with this second issue is to move from the uncon-
ditional (i.e. sample population level) distribution to a conditional distribution.
This equates to inferring the likely position of each sampled individual on the
distribution of sensitivities (cf. Revelt and Train, 1999; Train, 2003; Sillano and
Ortúzar, 2004; Greene et al., 2005).

Let β give a vector of taste coefficients that are jointly distributed according to
f (β | Ω), where Ω is a vector of distributional parameters that is to be estimated
from the data. Let Yn give the sequence of observed choices for respondent
n (which could be a single choice), and let L (Yn | β) give the probability of
observing this sequence of choices with a specific value for the vector β. Then
it can be seen that the probability of observing the specific value of β given the
choices of respondent n is equal to:

L (β | Yn) =
L (Yn | β) f (β | Ω)∫

β L (Yn | β) f (β | Ω) dβ
(1)

The integral in the denominator of Equation 1 does not have a closed form so-
lution, such that its value needs to be approximated by simulation. This is a
simple (albeit numerically expensive) process, with as an example the mean for
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the conditional distribution for respondent n being given by:

β̂n =
∑R

r=1 [L (Yn | βr)βr]∑R
r=1 L (Yn | βr)

, (2)

where βr with r = 1, . . . , R are independent multi-dimensional draws1 with equal
weight from f (β | Ω) at the estimated values for Ω. Here, β̂n gives the most
likely value for the various marginal utility coefficients, conditional on the choices
observed for respondent n.

It is important to stress that the conditional estimates for each respondent
follow themselves a random distribution, and that the output from Equation 2
simply gives the expected value of this distribution. As such, a distribution of the
output from Equation 2 across respondents should not be seen as a conditional
distribution of a taste coefficient across respondents, but rather a distribution
of the means of the conditional distributions (or conditional means) across re-
spondents. Here, it is similarly possible to produce a measure of the conditional
standard deviation, given by:

β̃n =

√√√√√∑R
r=1

[
L (Yn | βr)

(
βr − β̂n

)2
]

∑R
r=1 L (Yn | βr)

, (3)

with β̂n taken from Equation 2.
Obtaining information on the likely location of a given respondent on the

distribution of tastes across the sample population can be a great asset for var-
ious reasons. Here, Greene et al. (2005) and Hess (2007) amongst others show
that when using conditional means, issues with counter-intuitively signed coeffi-
cients are largely avoided. However, these applications fail to recognise that the
conditional values themselves follow a distribution, and the ratio of the condi-
tional mean time and cost sensitivities for an individual is as a consequence not
the same as the mean of the ratio of the individual specific conditional distri-
butions for the time and cost sensitivities. Other applications have been more
concerned with making use of the conditional estimates for individual coefficients
with a view to informing various classification approaches. Here, one application
comes in attempts to retrieve individual specific information processing strate-
gies (cf. Hess and Hensher, 2010), while Campbell and Hess (2009) have recently
explored the use of conditional parameter distributions in the process of identify-
ing respondents with extreme sensitivities, i.e. outliers, in data used for discrete
choice models. Finally, as discussed for example by Train (2003), information on
individual specific distributions can be used in posterior analyses (e.g. cluster
analysis) that identify different segments of respondents and link the heterogene-
ity to socio-demographic attributes. This can once again inform re-specification

1The term independent relates to independence across different multivariate draws, where
the individual multivariate draws allow for correlation between univariate draws.
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of the model, this time with different or greater segmentation. However, as noted
by Train (2003), this approach is only applicable if the conditional means them-
selves account for a sufficiently large share of the heterogeneity in the sample
distribution.

What has received relatively little attention in the existing literature is the
potential impacts of the unconditional distributional assumptions on the shape of
the conditional distributions. As discussed by Train (2003), the combination of
respondent-specific distributions across the sample yields the sample distribution.
However, the interest is in the individual-specific distributions, and in particular
in many cases the conditional means, giving the most likely position of each
individual in the sample distribution. Here, if the conditional distributions could
be shown to be relatively independent on the assumptions made for the former,
analysts could rely on easier to use unconditional distributions (e.g. Normal)
if the aim is to make use of the means of these conditional distributions. If
any out of sample prediction work was planned, then conditional distributions
are clearly not applicable. However, if conditional distributions are indeed less
affected by distributional assumptions, and give a better indication of the actual
true distribution, then they can potentially be of use in informing a better choice
of distributional assumptions for a revised model.

Another issue limiting the use of conditional parameter distributions is the
lack of available software, with only NLogit (Econometric Software, 2007) giving
users the possibility of producing conditional parameters. Despite the popularity
of NLogit, many analysts rely on other packages for MMNL analyses, notably
Biogeme (Bierlaire, 2005) or purpose written code.

Given the above discussion, the aims of this paper are twofold. Firstly, the
paper presents a freeware software tool that is able to produce conditional pa-
rameter estimates for a range of different model specifications (i.e. distributional
assumptions), independently of the software package used in model estimation.
Secondly, we present an application that discusses the impacts of assumptions on
the shape of the unconditional distribution on the resulting shape of the condi-
tional distribution.

The remainder of this paper is organised as follows. The free software tool is
described in Section 2. Section 3 presents the empirical application comparing
different distributions. Finally, Section 4 presents the conclusions of the paper.

2 Free software tool

The free software was produced using Matlab and is available for download from
the author’s website2. The programme consists of a standalone executable3 along
with a spreadsheet tool used to generate the input files for the Matlab programme.

2www.stephanehess.me.uk
3For users without a Matlab installation, the programme requires the installation of libraries

that are similarly available for download from the author’s website.
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We will now look at these two components in turn.
The macro-driven spreadsheet initialises to the situation shown in the first

half of Figure 1. Here, the user is required to specify the number of coefficients,
observations, alternatives and respondents. Additionally, an output directory
needs to be specified, alongside a name for the model. In the second half of
Figure 1, we have used the settings from the empirical application in Section 3,
and have specified a conditionals subdirectory of the C drive along with naming
our model example.

Figure 1: Free software tool: initial settings (before and after)

The next step is for the user to press the Generate fields button. This produces
fields in which the user needs to enter respondent identification numbers, choice
indicators and the attributes of the various alternatives4. Additionally, the soft-
ware generates a number of fields for each of the coefficients where the user needs
to make a choice of distribution and enter the estimated parameters. A pop-up
window explains the various settings to the user, and some explanations are also
provided later in the paper in the context of the empirical application.

The situation after pressing the Generate fields button is illustrated in the
first half of Figure 2. The second half shows the situation after the settings have
been entered. Here, the first parameter is a constant, fixed at 0.37, while the
travel time and travel cost coefficients follow Normal distributions, with means
and standard deviations given by the α and γ parameters, taken from the appli-
cation in Section 3. The spreadsheet is limited to coefficients using independent
Normal, Uniform, symmetrical Triangular, Lognormal and Johnson SB distribu-

4Here, the software is limited to a linear in parameters specification, but the user can work
around this to include interactions with socio-demographic variables by making some attributes
specific to given socio-economic subgroups.
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Figure 2: Free software tool: data entry stage (before and after)

tions. These limitations however do not apply to the Matlab programme, and
the user can also directly generate input files making use of other distributions,
including multi-variate ones (e.g. multivariate Normal with Cholesky transfor-
mation).

The figure shows all 8 choices for the first respondent, along with the first
3 choices for the second respondent. The attribute levels are entered in block
for each alternative, using the same ordering as in the section specifying the
coefficients. In the present example, the first attribute is a dummy variable used
for the first alternative, with the second and third giving travel cost and travel
time respectively5.

The next two steps require the user to first run a check on the entered values
(the Check input button) before using the Produce outputs button to generate the
input files for the Matlab programme. This latter button leads to the generation
of three separate files, one containing the data, one containing the draws to be
used for the various coefficients and one containing the settings of the problem in
terms of coefficients, observations, alternatives and respondents6. The file names

5Travel cost is given in øre, where one Danish Krone is equal to 100 øre, with travel time
given in minutes.

6If the inputs are generated manually, i.e. not making use of the spreadsheet, the user needs
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are based on the name specified by the user in cell G3.
After completing the generation of the input files, the user is now ready to

proceed to the Matlab tool for the computation of the conditional parameter
estimates. After launching the executable, the user is prompted to enter the
name of the model, as specified in cell G3 in the spreadsheet tool. The remainder
of the process requires no user input and is illustrated in Figure 3. As a first step,
the software provides an overview of the data in terms of choices, respondents and
coefficients. It then gives some summary statistics for the simulated draws for
the various coefficients. Finally, it shows the unconditional log-likelihood7, the
log-likelihood calculated with the conditional distributions for each respondent
(i.e. assigning the conditional weights from Equation 1 to the individual draws),
and the log-likelihood calculated with the means of the conditional distributions
for each respondent (i.e. making use of just one value for each respondent).

The software produces two output files8. The actual conditionals are saved in
a file that contains two columns for each coefficient, namely the mean and stan-
dard deviation of the conditional distribution for each individual. Additionally,
the software produces a file that contains for each individual the weights for the
10, 000 draws used as the input. The weights for a given draw from β, say βp,
is given by L(Yn|βp)∑R

r=1 L(Yn|βr)
. On the basis of these weights, it is then possible to

produce draws from the conditional distribution for each respondent.

3 Empirical application

This section presents the findings of a brief application discussing the impacts of
unconditional distributions on the shape of the conditional distributions. Model
estimation was carried out in Biogeme (Bierlaire, 2005), making use of 500 Halton
draws per individual, and the above discussed tool was used for the generation
of the conditional parameter estimates. To ensure consistency of the results, the
unconditional Biogeme estimates and conditional parameter estimates from the
software tool discussed in this paper were compared to results obtained in NLogit
(Econometric Software, 2007), with the exception of the Johnson SB distribution,
which is only implemented with some parameter restrictions in NLogit.

3.1 Data

The analysis makes use of stated choice (SC) data collected for the DATIV study
carried out in Denmark in 2004 (cf. Burge and Rohr, 2004). For this survey, a
binary unlabelled route choice experiment was used, with two attributes, travel

to similarly generate the appropriate three files.
7Here, some discrepancies are possible when compared to the log-likelihood produced during

estimation due to the use of different random draws. As an example, the unconditional and
conditional log-likelihood values in Figure 3 differ slightly from those in Table 1 and Table 2.

8The model name used in the input is used as the basis of the filenames for the output.
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Figure 3: Free software tool: calculation of conditionals

time and travel cost describing the alternatives. For the present analysis, we
make use of 1, 767 observations collected from 230 respondents.

3.2 Model specification

Across all models used, a constant was associated with the first alternative (δ1),
and the travel time (βTT) and travel cost (βTC) coefficients were interacted lin-
early with the associated attributes.

Depending on the specification of taste heterogeneity, up to four parameters
(a, b, α and γ) were estimated for each coefficient, where, in the context of this
illustrative example, univariate distributions were used. We will now look at the
various models in turn.

MNL: In the MNL model, a point estimate (α) was estimated for both coeffi-
cients.

Uniform: In the MMNL model making use of a Uniform distribution, a left
boundary (a) was estimated along with a positive range parameter (b)9.

9Note that these parameters were obtained as transformations of the original Biogeme esti-
mates which are for the mean and half the spread.
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Triangular: In the MMNL model making use of a Triangular distribution, a left
boundary (a) was estimated along with a positive range parameter (b)10.
The distribution was constrained to be symmetrical, with the mean, median
and mode being equal to a+b

2 .

Normal: In the MMNL model making use of a Normal distribution, the mean
is given by α, with the standard deviation given by γ

Lognormal: In the MMNL model making use of a Lognormal distribution, α
and γ give the mean and standard deviation respectively for the underlying
Normal distribution. The offset parameter a is either positive or negative,
and b is a direction parameter, which is equal to −1 for both coefficients,
resulting in a tail towards minus infinity.

Johnson SB: In the MMNL model making use of a Johnson SB distribution,
α and γ again give the mean and standard deviation respectively for the
underlying Normal distribution. The offset parameter a is again either
positive or negative, and b is a positive range parameter.

3.3 Estimation results

The estimation results are summarised in Table 1. Here, we can see that all
five MMNL specifications lead to significant gains in model fit over the MNL
model, highlighting the presence of significant levels of taste heterogeneity in the
sample. In terms of the adjusted ρ2 measure, the best performance is obtained
by the Johnson SB distribution ahead of the Lognormal distribution, with the
symmetrical Triangular giving the poorest fit to the data. The three symmet-
rical distributions produce significant probabilities of positive coefficient values,
especially for βTT, where these results can be directly linked to the distributional
assumptions (cf. Hess et al., 2005). Both the Lognormal and the Johnson SB
distributions indicate that the domain of the distribution for the two taste co-
efficients should be entirely negative. Indeed, for the Lognormal distribution,
both offset parameters are negative (albeit no different from zero), while for the
Johnson SB distribution, the offset and range parameters are such that the up-
per limit for both coefficients is below zero. Before moving on, it should also
be noted that for the Johnson SB distribution, the second shape parameter (γ)
is only significantly different from zero at the 89% level for βTC, while for βTT,
neither shape parameter is significant at any reasonable level of confidence. This
is an illustration of the difficulties of estimating parameters for this complex
distribution.

10Once again, transformations of Biogeme estimates were used.
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3.4 Conditional model results

After estimation of the five MMNL models, the tool developed in Section 2 was
used to produce means and standard deviations for the conditional distributions
for each respondent. As a first illustration of the additional information gained
from this, Table 2 compares LL (Ω), the log-likelihood measures obtained dur-
ing estimation (i.e. using the sample distribution parameters), to LL

(
Ω̂n

)
, the

log-likelihood measures obtained using the individual-specific conditional distri-
butions, and LL

(
β̂n

)
, the log-likelihood measures obtained using the means of

the conditional distributions.
For each of the five distributions, we observe dramatically better fit when

making use of the conditional distributions as opposed to making use of the
unconditional distributions. This is to be expected as we now calculate the choice
probabilities for each individual by drawing from a distribution for the random
coefficients that is more likely to be the true distribution for that respondent.
Further increases are obtained when relying solely on the means of the conditional
distributions, i.e. using for each respondent the most likely values for the two
coefficients.

Surprisingly, the best performance for the two conditional log-likelihood mea-
sures is obtained by the Triangular distribution, even though it produced the
lowest log-likelihood measure in estimation (cf. Table 1). Furthermore, while
the Johnson SB distribution obtained the best fit in estimation, it produces the
lowest measure for LL

(
Ω̂n

)
, although, alongside with the Triangular distribu-

tion, it then produces the best performance when working with the means of the
conditional distributions, i.e. LL

(
β̂n

)
. This could suggest some differences in

how well various distributions can be used to infer individual specific distribu-
tions post estimation. However, it is not entirely clear what could be causing
this interesting finding. A possible explanation could have been discrepancies
between the unconditional distributions and the aggregated (over respondents)
conditional distributions. As mentioned earlier, the aggregated conditional dis-
tributions should be equal to the unconditional distributions. If for example, the
Uniform, Normal, Lognormal, and Johnson SB distributions had failed that test,
this would have indicated that they are incorrect distributions for the present
application, unlike the Triangular11. However, all five distributions passed the
test, thus not indicating any inherent problems with one of the distributions, but
rather supporting the above point about differences across distributions in the
impact of the distributional assumptions on the conditional distributions.

As a first step in our comparison of the results across models, we look solely
at the conditional means for the two coefficients, i.e. the most likely values for the
time and cost coefficients for each respondent. Empirical distribution functions
for the conditional means for the two coefficients are shown in Figure 4, along-

11The author is grateful to Kenneth Train for this suggestion.

144



Hess, Journal of Choice Modelling, 3(2), pp. 134-152

Table 2: Log-likelihood at convergence and using conditional distributions, and
means of conditional distributions

LL (Ω) LL (Ωn) LL
(
β̂n

)
Uniform -1,038.06 -862.52 -820.46

Symmetrical triangular -1,042.58 -853.24 -807.86
Normal -1,038.43 -863.03 -822.02

Logormal -1,033.12 -859.11 -821.99
Johnson SB -1,027.07 -863.74 -808.76

side the unconditional distributions. Here, we can see that for all five models,
the distribution of the conditional means has a narrower range than the uncon-
ditional distribution, where sign violations have also almost completely disap-
peared, repeating earlier results by Greene et al. (2005). For the cost coefficient,
the distribution has a significantly longer tail for the Lognormal and Johnson SB
distributions, while, for the time coefficient, the ranges are more comparable.

So far, we have looked at the empirical distribution function for the condi-
tional means across respondents, and have compared these distributions across
the five models. What is also interesting is to look at the results for each re-
spondent separately and compare these across respondents. This is the approach
taken in Figure 5, where, for clarity, the respondents are sorted according to
the conditional means produced by the Uniform model. This approach was used
solely with a view to analysing the stability across distributions in the ordering of
conditional means, and as such, the specific choice of a base distribution should
have only limited impact. Here, we can see that for βTC, the results are relatively
stable for respondents with low cost sensitivity, while, for respondents with high
cost sensitivity, the sensitivities produced by the Lognormal and especially the
Johnson SB distribution are more extreme. For βTT, the results are more stable
for respondents with high time sensitivity with the exception of the Lognormal
distribution, while there is now a greater discrepancy across distributions when
looking at respondents with low time sensitivity.

As a next step, we conduct an analysis similar to that reported in Train (2003,
section 11.6.2.), by comparing measures of mean and standard deviation for the
sample level distribution and for the distribution of the conditional means across
respondents. The interest in this process is to see what share of the sample
distribution variance is explained through making use of the conditional means
only, hence disregarding any variation around these conditional means. The
results of this process are summarised in Table 3, where µβ and σβ refer to the
means and standard deviations of the estimated sample level distributions for the
two coefficients, and µµn and σµn refer to the means and standard deviations for
the distribution of the conditional means across respondents.

As expected for a well specified and consistently estimated model, there are
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Table 3: Mean and standard deviation for sample level distributions and for
distribution of conditional means

βTC βTT

µβ µµn
µµn
µβ

µβ µµn
µµn
µβ

Uniform -0.0039 -0.0038 0.98 -0.1591 -0.1671 1.05
Symmetrical triangular -0.0039 -0.0041 1.05 -0.1971 -0.1902 0.96

Normal -0.0036 -0.0035 0.99 -0.1470 -0.1528 1.04
Logormal -0.0042 -0.0042 1.01 -0.1815 -0.1797 0.99

Johnson SB -0.0051 -0.0052 1.02 -0.2088 -0.2026 0.97

βTC βTT

σβ σµn
σµn
σβ

σβ σµn
σµn
σβ

Uniform 0.0020 0.0012 0.61 0.1563 0.0952 0.61
Symmetrical triangular 0.0025 0.0015 0.61 0.1565 0.0891 0.57

Normal 0.0017 0.0009 0.54 0.1780 0.1140 0.64
Logormal 0.0034 0.0020 0.58 0.1717 0.0890 0.52

Johnson SB 0.0046 0.0035 0.75 0.1145 0.0549 0.48

only very small differences between the sample distribution means (µβ) and the
means of the distribution of conditional means (µµn). Turning our attention to
the estimated standard deviations and the standard deviations for the distribu-
tion of conditional means across respondents, we observe major differences, with
σµn always being below σβ. This implies that not accounting for the hetero-
geneity in the conditional distributions gives only a partial representation of the
heterogeneity in the data. There are some differences across distributions, but
on average, we can see that making use of only the conditional means, we recover
just over half the sample level heterogeneity. This means that the share of the
differences across respondents that is captured through making use of the means
of the conditional distribution is in this case potentially large enough to allow us
to use this information to distinguish between respondents, for example in cluster
analysis. However, it also means that the individual specific coefficient values are
not known with certainty (in which case the standard deviation of the distribu-
tion of conditional means would be equal to the sample level standard deviation),
and that it would hence not be adequate to make use of these conditional means
for example in the calculation of willingness to pay measures.

After first concentrating entirely on the conditional means, we now incor-
porate the uncertainty in the individual specific conditional distributions. As
highlighted previously, there is, for each individual, heterogeneity around the
conditional mean, and the aggregation of the conditional distributions across
individuals yields the sample level distribution. However, the degree of hetero-
geneity for individual conditional distributions should on average be expected to
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Table 4: Degree of heterogeneity expressed as coefficient of variation

βTC βTT

Distribution cv µ̂ (cv) ̂µ0.5 (cv) cv µ̂ (cv) ̂µ0.5 (cv)
Uniform 0.52 0.45 0.44 0.98 1.33 0.80

Symmetrical triangular 0.64 0.73 0.45 0.79 0.88 0.66
Normal 0.48 0.45 0.39 1.21 184.11 0.83

Lognormal 0.82 0.55 0.55 0.95 0.62 0.62
Johnson SB 0.91 0.49 0.48 0.55 0.54 0.56

be lower than the sample level degree of heterogeneity, as this latter measure
also incorporates heterogeneity in the mean values across respondents. We un-
dertake this comparison by calculating the coefficient of variation for βTC and
βTT for each respondent. The results of this process are summarised in Table
4. Here, we show three measures for each coefficient, namely the coefficient of
variation of the unconditional distribution (cv), the mean across respondents of
the coefficient of variation for the conditional distributions (µ̂ (cv)) and the cor-
responding median ( ̂µ0.5 (cv)). The reason for including the latter is that it is
less sensitive to outliers. Looking first at the travel cost coefficient, we see sig-
nificant differences across estimated distributions, with much higher variation for
the Lognormal and Johnson SB distributions. When looking at the conditional
distributions, especially in terms of the median, the results are far more stable
across the five distributions. Turning our attention to the travel time coefficient,
the main outliers when looking at the unconditional distributions are the Nor-
mal (high) and the Johnson SB (low). With the conditional distributions, the
results are again more similar, though only when working with the median given
the huge outliers with the Normal distribution that have a major impact on the
mean. Comparing the median of the coefficient of variation for the conditional
distribution ̂µ0.5 (cv)) to the coefficient of variation for the sample level distribu-
tion (cv), we observe, with the exception of the Johnson SB for βTT, a reduction
in the degree of heterogeneity. This is consistent with the observation in Table
3 that part of the heterogeneity is captured in the variation across respondents
in the conditional means, where this share of the heterogeneity is lowest for the
Johnson SB for βTT.

As a final step, Figure 6 shows a graphical analysis of the results summarised
in Table 4 where we again sort the result by respondent according to the measures
obtained with the Uniform models. Here, we can see significant differences across
the five distributions especially for respondents with high degrees of uncertainty in
the conditional distributions, with the biggest outliers arising from the Triangular
and Normal models. This also shows the large differences across respondents
which could not be reflected in the results in Table 4. The same applies for
the time coefficient, with even bigger discrepancies for respondents with high

149



Hess, Journal of Choice Modelling, 3(2), pp. 134-152

C
om

pa
ris

on
 o

f c
on

di
tio

na
l c

oe
ffi

ci
en

ts
 o

f v
ar

ia
tio

n 
fo

r 
co

st
 c

oe
ffi

ci
en

t w
ith

 d
iff

er
en

t d
is

tr
ib

ut
io

ns

R
es

po
nd

en
ts

, s
or

te
d 

by
 c

on
di

tio
na

l c
oe

ffi
ci

en
ts

 o
f v

ar
ia

tio
n 

fo
r 

co
st

 c
oe

ffi
ci

en
t w

ith
 U

ni
fo

rm
 d

is
tr

ib
ut

io
n

cvTC

1
45

90
13

5
18

0
23

0

0.00.20.40.60.81.01.2

U
ni

fo
rm

T
ria

ng
ul

ar
N

or
m

al
Lo

gn
or

m
al

Jo
hn

so
n 

S
B

C
om

pa
ris

on
 o

f c
on

di
tio

na
l c

oe
ffi

ci
en

ts
 o

f v
ar

ia
tio

n 
fo

r 
tim

e 
co

ef
fic

ie
nt

 w
ith

 d
iff

er
en

t d
is

tr
ib

ut
io

ns

R
es

po
nd

en
ts

, s
or

te
d 

by
 c

on
di

tio
na

l c
oe

ffi
ci

en
ts

 o
f v

ar
ia

tio
n 

fo
r 

tim
e 

co
ef

fic
ie

nt
 w

ith
 U

ni
fo

rm
 d

is
tr

ib
ut

io
n

cvTC

1
45

90
13

5
18

0
23

0

0246810

U
ni

fo
rm

T
ria

ng
ul

ar
N

or
m

al
Lo

gn
or

m
al

Jo
hn

so
n 

S
B

F
ig

ur
e

6:
C

oe
ffi

ci
en

t
of

va
ri

at
io

n
fo

r
co

nd
it

io
na

l
di

st
ri

bu
ti

on
s,

so
rt

ed
by

re
sp

on
de

nt

150



Hess, Journal of Choice Modelling, 3(2), pp. 134-152

degrees of uncertainty. In contrast with Figure 5, this shows that while the results
are quite stable across distributions in terms of the means of the conditional
distributions, i.e. the most likely location of each respondent on the sample level
distribution, differences arise in the variation around these mean levels. This
is also consistent with an observation that can be made for the unconditional
distributions on the basis of Table 3, namely that while the mean values are
relatively stable across the five distributions, there are much larger differences
when it comes to the retrieved degree of heterogeneity.

4 Summary and conclusions

This paper has discussed the issue of the computation of conditional distribu-
tions for coefficients estimated using continuous Mixed Multinomial Logit mod-
els. While this topic has been looked at at length by various authors, as discussed
in Section 1, the number of applications making use of conditional distributions
is still relatively limited. This paper has identified the lack of available software
(other than NLogit, Econometric Software 2007) as one reason for this and has
consequently discussed the development of a freeware software tool that allows
users to compute conditional distributions from any choice of unconditional dis-
tributions12, independently of the software used during model estimation.

The paper has also looked at an additional issue in this area, namely the im-
pact of assumptions made for the unconditional distributions on the shape of the
conditional distributions. Here, an application using stated choice data collected
in Denmark has shown that while the move from unconditional to conditional
distributions potentially brings results closer together (notably in terms of the
conditional means), some discrepancies do remain. In this context, further work
is required, notably a large scale study making use of simulated data with various
underlying true distributions. It is also important to acknowledge a limitation of
the present study in that it does not take into account the sampling distribution
of the parameters of the underlying distribution, a further development in the
context of conditional distributions, discussed by Train (2003, section 11.3).
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