A joint model for stated choice and best-worst scaling data using latent attribute importance: application to rail-air intermodality

Fangqing Songa,b, Stephane Hessa,b and Thijs Dekkera,b

aInstitute for Transport Studies, University of Leeds, UK; bChoice Modelling Centre, University of Leeds, UK

ARTICLE HISTORY
Compiled March 1, 2019

ABSTRACT
Best-worst scaling (BWS) data has been increasingly collected alongside stated choice (SC) data. However, little is known about the relationships between BWS responses and stated choices at the level of individual respondents. In this paper, SC data and two types of BWS data (i.e. case 1 and case 2) are collected from the same respondents in the context of a mode choice experiment and a joint model is developed linking the different datasets through the notion of latent attribute importance. We find that people who perceive an attribute to be more important are more sensitive to the attribute in the SC tasks, attach more overall weight to the same attribute in the BWS case 1 tasks and react more strongly to the different levels for the attribute in the BWS case 2 tasks. We find that this consistency is especially strong for non-cost attributes. There is however not a one-to-one relationship between the different survey methods, suggesting that researchers should not see BWS data as a replacement for SC data in studies.

KEYWORDS
Stated choice, Best-worst scaling, Attribute importance, MaxDiff model, Integrated Choice and Latent Variable model

CONTACT Fangqing Song. Email: tsfs@leeds.ac.uk
1. Introduction

In the transport realm, demand analysis for novel alternatives has predominantly relied on stated-choice (SC) data, where in each scenario, a respondent chooses his/her most preferred alternative. Recently, a limited number of travel behaviour studies have adopted the best-worst scaling (BWS) approach as an alternative (Dumont, Giergiczny, and Hess 2015; Hensher, Mulley, and Rose 2015; Beck and Rose 2016; Beck, Rose, and Greaves 2017). The BWS approach originates in marketing and the majority of its applications can be found in the marketing and health literature. In BWS, respondents are asked to in each task select the best and worst option. Different formats of this exist. BWS Case 1 surveys ask respondents to identify, in each “choice” screen, the most and least important attribute per se without a focus on the actual levels (Finn and Louviere 1992; Auger, Devinney, and Louviere 2007; Marti 2012). BWS Case 2 surveys on the other hand ask respondents to identify the most and least important attribute levels (Coast et al. 2006; Dyachenko, Reczek, and Allenby 2014). While BWS1 measures the relative importance of attributes, BWS2 thus measures the relative attractiveness of attribute levels across different attributes. SC data is most comparable to BWS Case 3 data where in addition to be the most preferred alternative, respondents are also asked to identify the least preferred alternative in each choice task.\(^1\)

When analysing SC and BWS Case 3 data, analysts infer the importance of attributes in the decision making process from observed trade-offs among different alternatives and attributes. BWS Case 1 and Case 2 data provide more direct information on the importance of the attributes and their respective levels. A key question that has not been addressed in the literature is whether the extent to which respondents weight attributes in a BWS Case 1 survey and rank attribute levels in a BWS Case 2 survey is consistent with how those same attributes and levels influence the choices in a SC survey.

Answering this question is relevant since a high level of correspondence between the different data sources would create opportunities for data synthesis. Combining

\(^1\)Comparisons between SC and BWS case 3 data can be found in the work of Giergiczny et al. (2017) and Petrolia, Interis, and Hwang (2018).
these alternative sources may improve efficiency and thereby the robustness of policy
recommendations, particularly when the number of tasks that can be used in an SC ex-
periment is limited due to the cognitive burden of the choice tasks. This can especially
be the case when many attributes are involved (Pullman, Dodson, and Moore 1999;
Carlsson 2003; Bradley and Daly 1994), and using a mixture of different elicitation
formats may reduce this burden.

The majority of studies comparing SC data and BWS Case 1 and (or) Case 2 data
have been conducted at the sample level (Louviere and Islam 2008; Potoglou et al.
have jointly analysed SC and BWS Case 2 data. The joint analysis of SC data with
BWS Case 1 data has not yet been explored.\(^2\) In this paper, we explore if there is
benefit in jointly analysing SC, BWS Case 1 and BWS Case 2 data.

The proposed model structure assumes that responses to BWS Case 1, BWS Case 2
and SC tasks are all driven by the common notion of perceived attribute importance.
We develop an Integrated Choice and Latent Variable (ICLV) model (Ben-Akiva et al.
2002) where an attribute-specific latent variable of *attribute importance* is incorporated
to link the three different types of data. The notion of attribute importance has previ-
ously been put forward to challenge the decision heuristic of attribute non-attendance
(Hensher, Rose, and Greene 2005; Hensher 2006; Hensher and Rose 2009), arguing that
some people actually perceive reduced importance for an attribute in making stated
choices rather than completely ignoring it even if the respondents stated that they
did not take the associated attribute into account (Hess and Hensher 2010; Campbell,

Our work adopts a similar strategy as Hess and Hensher (2013), who treat *attribute
importance* as a latent variable which is then used to explain the responses to SC
tasks, binary stated attribute attendance responses and stated attribute rankings.
In our model, the latter indicators are replaced by BWS Case 1 and Case 2 data.
We apply the proposed model in the context of travel mode choice for integrated
HSR (high-speed rail)-air service in China. As expected, we find a certain degree

\(^2\)BWS Case 1 and SC data are often collected at different moments of the survey design and collection process. Outcomes of the former are for example regularly used to determine which attributes from a larger pool of attributes need to be included in the SC experiment.
of correspondence among the behaviour in the stated choice scenarios, BWS Case 1 exercises and BWS Case 2 exercises. This correspondence is especially strong for non-cost attributes. There is however not a one-to-one relationship between the different survey methods and this suggests that researchers, while being keen to explore the additional insights provided by BWS data should not see it as a replacement for SC data in studies.

The remainder of this paper is organised as follows. Section 2 explains the methodology of the joint model. The survey design and the data is described in section 3. The case study is analysed in section 4, which is followed by a conclusion section.

2. Methodology

In this section, we look at the individual components of our model framework before talking about estimation.

2.1. Model framework

Fig. 1 illustrates of our joint modelling framework, where items in rectangular are observable to researchers while items in ellipse are unobserved. The model has three measurement components, explaining the three different types of dependent variables, namely the stated choices, the BWS1 (BWS Case 1) responses and the BWS2 (BWS Case 2) responses. All three components are also influenced by the latent attribute importance variable and we consequently look first at the structural equations for the latent variables.

2.2. Structural equations for latent variables

We denote the attribute-specific latent variables of attribute importance, as perceived by respondent \(n \), by the vector \(\alpha_n = (\alpha_{n1}, \ldots, \alpha_{nK})' \), where \(K \) describes the total number of attributes. Selected socio-demographic characteristics \(Z_n \) are used to explain
the latent variables in the structural equations:

$$\alpha_{nk} = \omega_k Z_n + \eta_{nk}, \quad (k = (1, \cdots, K)), \quad (1)$$

where η_{nk} is a standard Normal error term and where the estimated vector of parameters ω_k measures the impact of the socio-demographic characteristics on the latent variable. Note that Z_n is centred on 0, such that the latent variable α_{nq} has a mean of 0.

2.3. Choice model

Let U_{int} in Eq. 2 represent the utility of alternative i for respondent n in stated choice task t. U_{int} consists of a deterministic portion V_{int}, and an unobserved error term ε_{int} which is independently and identically distributed (IID) extreme value type I.

$$U_{int} = V_{int} + \varepsilon_{int} = \delta_i + \beta_n' x_{int} + \varepsilon_{int}. \quad (2)$$

The term δ_i is an estimated alternative-specific constant (ASC) while $x_{int} = (x_{int1}, \cdots, x_{intK})'$ is a vector of explanatory variables representing the K attributes of alternative i as shown to respondent n in SC task t, where the estimated vector $\beta_n = (\beta_{n1}, \cdots, \beta_{nK})'$ captures the marginal utility of these attributes.

Marginal utility varies across respondents due to the role of the latent variables,
as well as additional observed and unobserved preference heterogeneity that is independent of the latent variable. For an attribute where we assume a positive marginal utility, we specify β_{nk} such that:

$$\beta_{nk} = e^{\tau_k \alpha_{nk}} \cdot e^{\kappa_k Z_n} \cdot e^{\mu_{\ln \beta_k} + \sigma_{\ln \beta_k} \xi_{nk}},$$

where, for an attribute with an expected negative marginal utility, we instead work with the negative exponential.

Latent attribute importance is accommodated in an exponential form to act as a positive scalar on marginal utility where τ_k captures the degree of scaling. To avoid overstating the role of latent attribute importance in explaining heterogeneity in the SC data (Vij and Walker 2016), we let the socio-demographics Z_n which explain the latent variable α_{nk} in the structural equations also directly enter the marginal utilities, where the vector κ_k measures the direct impacts from socio-demographics Z_n on the scaling of marginal utility. Additional random heterogeneity that is not linked to the latent variables is accommodated by specifying the underlying parameter, net of the influence of socio-demographics and the latent variable, to follow a Lognormal distribution. We then have that $\mu_{\ln \beta_k}$ and $\sigma_{\ln \beta_k}$ denote the mean and standard deviation of the underlying Normal distribution, where ξ_{nk} follows a standard Normal distribution across respondents for attribute k. It can be observed that as $e^{\tau_k \alpha_{nk}}$ itself follows a Lognormal distribution, β_{nk} does too as it is formed by a product of Lognormals.

The probability of alternative s being chosen out of I alternatives by respondent n in SC task t is then written as:

$$P(y_{nt} = s) = \frac{e^{\delta_{s} + \sum_{k=1}^{K} \beta_{nk} x_{ntk}}}{\sum_{i=1}^{I} e^{\delta_{i} + \sum_{k=1}^{K} \beta_{nk} x_{ntk}}},$$

where this is dependent on a specific realisation of the vector of random coefficients.
2.4. **Measurement models**

In explaining BWS1 and BWS2 data, we adopt the MaxDiff model (Marley and Louviere 2005; Marley, Flynn, and Louviere 2008) and attempt to explain the choice for the observed pair of best and worst attributes, or attribute levels, respectively.

Let $B_{qnm|c}$ denote the attractiveness of attribute q for respondent n as shown in BWS task m and BWS type c, where $c = 1$ stands for BWS1, and $c = 2$ for BWS2. MaxDiff models explain the choice of the combination of attributes or attribute levels with the largest difference in utility between them. We thus define $BW_{(q,j)nm|c} = B_{qnm|c} + W_{jnm|c} + \nu_{qjnm|c}$, where $B_{qnm|c}$ and $W_{jnm|c}$ give the “utility” of the two attributes or attribute levels that would be used to create the combination (q, j) while $\nu_{qjnm|c}$ denotes a standard extreme value type I error term operating at the level of the attribute (level) pairs allowing us to operate within the MNL framework when deriving the probability of a given pair being the one with the largest difference in utility. Rather than simply assuming symmetry between the utilities for the best and worst levels, we set $W_{jnm|c} = -\lambda_j|_c B_{jnm|c}$, thus accounting for scale differences between the “best” and the “worst” stage, while still assuming that the driving factors of making an attribute (level) attractive or unattractive are the same across the two stages.

In the BWS1 setting, we work with attributes rather than attribute levels, and thus have a single “utility” for a given attribute k to be “best” attribute, where this is given by:

$$B_{knm|1} = \delta_{k|1} + \zeta_k|1\alpha_{nk},$$ \hspace{1cm} (5)

where this is constant across BWS1 tasks (m) as the attribute levels are not used. In Eq. 5, we have a constant $\delta_{k|1}$ and a sensitivity $\zeta_k|1$ with respect to the latent variable, where these two parameters are to be estimated. Since α_{nk} is centred on 0, $\delta_{k|1}$ captures the mean weight of attribute k in the BWS1 data, while $\zeta_k|1$ captures the variation in the weight of the attribute in the sample due to latent attribute importance. Respondents who attach a higher importance to an attribute are expected to care more about that attribute in the BWS1 data.
In the BWS2 data, we work with multiple levels for the same attribute. The definition of the BWS2 "utility" for a given attribute level now depends on whether this attribute is treated as continuous or categorical. We explicitly here do not allow for scenarios in which multiple values for the same attribute are shown on one screen, i.e. only allowing for screens where each element is from a different attribute.

Let us define \(x_{knm|2} \) to be the value of continuous variable \(k \) as shown in BWS2 task \(m \) for respondent \(n \). We then define \(B_{knm|2} \) to be equal to:

\[
B_{knm|2} = \delta_{k|2} + \gamma_{k|2} \cdot e^\zeta_{k|2} \alpha_{nk} x_{knm|2}. \tag{6}
\]

Here, we assume that the attractiveness of a level depends in a linear fashion on the actually presented value \(x_{knm|2} \). \(\delta_{k|2} \) captures the constant associated with attribute \(k \) and \(\gamma_{k|2} \) captures the baseline marginal impact of the attribute level on \(B_{qnm|2} \).

This marginal utility is then affected by the latent variable, where \(\zeta_{k|2} \) scales the level spacing based on latent attribute importance.

The treatment is different if attribute \(k \) is a categorical variable. In that case, a specific level will apply. Let us assume that attribute \(k \) takes \(L_k \) possible values in a survey. We would then have:

\[
B_{knm|2} = \phi_{k_1|2} \left(x_{knm|2} = 1 \right) + \sum_{l=2}^{L_k} \phi_{k_l|2} \left(e^\zeta_{k_l|2} \alpha_{nk} \right) \left(x_{knm|2} = l \right). \tag{7}
\]

In this specification, we have a sum over all the possible levels that could apply for attribute \(k \), where only one of these will apply in a given BWS2 scenario, where the bracket \(x_{knm|2} = l \) will be equal to 1 for that specific level. We now estimate the baseline attractiveness of each level for the categorical attribute through \(\phi_{k_1|2} \).

The latter is then further re-scaled by the corresponding latent attribute importance through \(\zeta_{k|2} \), where this impact of the latent variable is attribute rather than attribute-level specific. We do not scale the base level to avoid the situation where an individual with higher attribute importance derives higher attractiveness from the base level than
other individuals. Under the current specification, respondents with higher attribute importance then exhibit a wider gap in terms of attractiveness between a higher level and the lowest (base) level for that attribute than others do.

For normalisation purpose, one attribute in the MaxDiff BWS1 model and one attribute level in the MaxDiff BWS2 model need to be selected as the base by fixing the associated parameters to 0.

Due to the experimental design, the choice set varies over respondents and tasks, and this thus affects what is possible for a respondent to select as the combination of best and worst attributes or attribute levels in a given scenario. We use $D_{nm|c}$ to define the set containing all the available items presented to respondent n in BWS task m and type of BWS data c. The items in $D_{nm|c}$ allow forming the set $S_{nm|c}$ containing all the possible best-worst pairs of the available attributes or attribute levels, respectively. The best-worst choice probabilities of respondent n selecting h as the best and r as the worst ($h, r \in D_{nm|c}, r \neq h, (h, r) \in S_{nm|c}$) in BWS task m can then be written as:

$$P\left((b, w)_{nm|c} = (h, r) \right) = \frac{e^{BW(h,r)_{nm|c}}}{\sum_{(q,j) \in S_{nm|c}} \left(e^{BW(q,j)_{nm|c}} \right)},$$ (8)

making use of the appropriate combinations of Eqs. 5, 6 and 7.

2.5. Log-likelihood

The unconditional probability of observing the sequence of stated choices y_n and best-worst responses $(b, w)_n$ can be expressed as the integral of the multiplication of the conditional stated choice probabilities and the conditional best-worst choice probabilities over the distribution of η_n, the random component of the latent variables α_n, and over the distribution of ξ_n, the random component of the unobserved preference.
heterogeneity irrelevant from α_n, such that the log-likelihood is given by:

$$LL(y, (b, w)) = \sum_{n=1}^{N} \ln \int_{\eta_n} \int_{\xi_n} \left(\prod_{t=1}^{T_n} P(y_{nt} | \beta_n) \prod_{m|1=1}^{M_n|1} P((b, w)_{nm|1} | \alpha_n) \prod_{m|2=1}^{M_n|2} P((b, w)_{nm|2} | \alpha_n) \right) f(\eta_n) g(\xi_n) \, d\eta_n \, d\xi_n$$

(9)

where T_n, $M_{n|1}$ and $M_{n|2}$ give the total numbers of the SC tasks, the BWS1 tasks, and the BWS2 tasks shown to respondent n. Meanwhile, choice observations y_{nt}, $(b, w)_{nm|1}$, $(b, w)_{nm|2}$ refer to the chosen alternative in a SC task, the chosen best-worst pair of attributes in a BWS1 task, and the best-worst pair of attribute levels selected in a BWS2 task, respectively. Since the resulting LL does not have closed-form expression, the value of the log-likelihood needs to be approximated through simulation (Train 2009).

2.6. Hypothesis

A hypothesis is put forward with respect to the correlations among stated choices, BWS1 responses and BWS2 responses as well as the role of latent attribute importance in the joint model. Providing that a higher value of the latent variable is associated with stronger attribute importance, we expect the signs of the impact factors of attribute importance in the choice model and measurement models (i.e. $\tau, \zeta_{1}, \zeta_{2}$) to all be positive. That is, respondents who perceive higher importance from an attribute would have a higher probability to:

• be more sensitive to the attribute in SC tasks;
• give more weight to the same attribute per se in BWS1 tasks;
• experience a wider gap in terms of attractiveness between a higher level and the lowest level (i.e. higher marginal utility) for the attribute concerned in BWS2 tasks.

Of course, the same result also applies if all signs are negative, i.e. a higher latent
variable leads to lower sensitivities in SC, lower weights in BWS1 and narrower gaps in BWS2. In that case, the latent variable would be interpreted as reduced attribute importance. Opposite signs for the different effects or insignificance indicate a lack of consistency for the associated attribute across datasets. If fixing all the impact factors to 0, the joint ICLV model would be equivalent in specification to a model which pools all the three datasets but ignores any correlations in between. In this sense, our model can identify whether and to what extent the choices made in different types of tasks are consistent.

3. Case study: Survey and data

3.1. Survey background

Our research is conducted in the context of HSR (high-speed rail)-air intermodality in China. This integrated HSR-air service has been put into practice since 2011 in Shanghai with an aim to enhance the connectivity of Shanghai and its non-airport catchment area by enabling passengers to jointly travel by HSR and air on a single trip with a convenient and even seamless transfer between the two different modes and without the need of purchasing HSR and flight tickets separately.

Since collecting data from real passengers at an airport terminal is very difficult, we gained more behavioural and preference information from each respondent. Concerning this, we used SC, BWS1 and BWS2 tasks in the survey to understand how people react to the relatively new integrated HSR-air mode.

We collected data at Pudong International airport in Shanghai in January 2017. A total of 123 respondents answered 8 SC tasks, 7 BWS1 tasks and 8 BWS2 tasks. The SC component repeatedly asked participants to choose the most favourable alternative. The BWS1 tasks examined the relative weight of all the 7 attributes involved in the SC tasks. The BWS2 tasks focused on the relative attractiveness of 14 attribute levels of interest.

A detailed description of survey background, socio-demographic composition, SC

3A preliminary pilot survey suggested clearance is required, outbound passengers have low willingness to participate in the survey, and few people have knowledge about HSR-air intermodality.
experimental design, and descriptive analysis on the SC data can be found in Song, Hess, and Dekker (2018). All the respondents were shown tasks in the order of SC, BWS1 and BWS2, thus any ordering effects cannot be addressed in our study. We did so to ensure that respondents would be aware of the choice scenarios and the meaning of attributes involved in the SC tasks when they responded to the BWS1 and BWS2 tasks.

3.2. *SC tasks*

The context of the SC tasks is framed in the following way:

- a passenger is travelling from a domestic origin O to an overseas destination D;
- direct flights from O to D are unavailable;
- a passenger from O to D needs to travel via Shanghai;
- a passenger can only travel by air between Shanghai and D.

Four alternatives were shown to respondents, namely car-air, air-air, separated HSR-air and integrated HSR-air. As shown in Fig. 2, we denote the first leg between O and Shanghai as the “minor leg” on which various modes are available, and the second leg between Shanghai and D as the “major leg” where air is the only option. Car-air means using car on the minor leg and using flight on the major leg; air-air means taking a connecting flight; separated HSR-air refers to the traditional way of purchasing air and HSR tickets separately; integrated HSR-air refers to the new HSR-air intermodal service.

![Figure 2. Illustration of choice scenarios in the SC survey.](image)

The SC survey was generated through a D-efficient design (Rose and Bliemer 2007) in Ngene (Metrics 2012). Each respondent was presented with 8 SC tasks in a ran-
domised order, giving a total of 984 stated choice observations. Fig. 3 shows an example of the SC tasks. A total of 7 attributes were incorporated, including minor time, connection time, transfer time, delay protection, ticket integration, luggage integration and travel cost. Minor time gives the time spent on the minor leg; transfer time denotes the time spent on transferring between the minor leg and the major leg;\(^4\) and connection time means the time spent on waiting and going through various procedures (e.g. security check-in, luggage check-in) at the departure airport of the major leg. Travel cost gives the total expenditure for the journey, and delay protection indicates to what extent a respondent would be compensated in case of delay on the minor leg. Ticket integration and luggage integration are two attributes describing the extent of integration of the ticketing systems and luggage-handling systems between the HSR side and the air side, of which the detailed levels can be found in Table 2.

<table>
<thead>
<tr>
<th></th>
<th>Car-air</th>
<th>Air-air</th>
<th>Separated HSR-air</th>
<th>Integrated HSR-air</th>
</tr>
</thead>
<tbody>
<tr>
<td>Travel cost</td>
<td>¥1,250</td>
<td>¥1,050</td>
<td>¥1,150</td>
<td>¥1,250</td>
</tr>
<tr>
<td>Minor time</td>
<td>5h</td>
<td>1.5h</td>
<td>2.5h</td>
<td>2.5h</td>
</tr>
<tr>
<td>Transfer time</td>
<td>0h</td>
<td>0h</td>
<td>1.5h</td>
<td>1.5h</td>
</tr>
<tr>
<td>Connection time</td>
<td>1.5h</td>
<td>4h</td>
<td>1.5h</td>
<td>2.5h</td>
</tr>
<tr>
<td>Delay protection</td>
<td>None</td>
<td>Free flight change</td>
<td>None</td>
<td>50% discount on changing flight</td>
</tr>
<tr>
<td>Ticket integration</td>
<td>-</td>
<td>Book together, Fixed-time flight on minor leg, Easy collection</td>
<td>Book separately, Fixed-time train on minor leg, No easy collection</td>
<td>Book together, Fixed-time train on minor leg, Easy collection</td>
</tr>
<tr>
<td>Security check and luggage integration</td>
<td>-</td>
<td>Two security checks, No integrated luggage handling system</td>
<td>Two security checks, No integrated luggage handling system</td>
<td>One security check, Integrated luggage handling system available</td>
</tr>
</tbody>
</table>

![Figure 3. Example of SC tasks.](image)

We see that the integrated HSR-air alternative was most frequently chosen (41.57%), followed by the separated HSR-air alternative (26.42%), whereas car-air was selected for the least number of times (9.35%), which indicates relatively strong attractiveness of the integrated service and its potential market.

\(^4\)Transfer time has three levels: it takes a value of 0min to indicate a seamless transfer in the same transport hub and takes the level of either 45min or 90min to suggest a transfer between two different hubs.
3.3. **BWS Case 1 tasks**

The BWS1 section required respondents to choose the attributes that they weighted the most and the least when they completed the SC section. A balanced incomplete block design (BIBD) was adopted to generate the BWS1 experiment which could ensure each attribute occurred the same number of times and co-occurred with any other attribute the same number of times across all the choice tasks (Louviere, Flynn, and Marley 2015). In our survey, 7 attributes were assigned into 7 randomly-displayed BWS1 tasks, each with 4 attributes. Consequently, each attribute was shown to each respondent 4 times and each pair of attributes occurred twice. Fig. 4 shows an example of the BWS1 tasks.

<table>
<thead>
<tr>
<th>Most</th>
<th>If you are going to buy an integrated HSR-air service, what factors do you consider as the most important and least important?</th>
<th>Least</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>Minor time</td>
<td>☐</td>
</tr>
<tr>
<td>☐</td>
<td>Delay protection</td>
<td>☐</td>
</tr>
<tr>
<td>☐</td>
<td>Connection time</td>
<td>☐</td>
</tr>
<tr>
<td>☐</td>
<td>Travel cost</td>
<td>☐</td>
</tr>
</tbody>
</table>

Figure 4. Example of BWS1 tasks.

A simple way to analyse BWS data is to compute best-minus-worst (B-W) scores for each attribute.\(^5\) Table 1 summarises the simple B-W score for each attribute averaged across respondents in a descending order as well as the standard deviation (s.d.) of individual-level B-W scores for each attribute. A higher B-W score means greater weight to the corresponding attribute in deciding whether to buy an integrated HSR-air option in the SC tasks. These scores provide a straightforward implication that minor time and ticket integration mattered the least, whereas connection time and travel cost are the two attributes that mattered the most by the sample. The standard deviations of B-W scores suggest that respondents gave more diverse weight to the time-unrelated attributes than to time-related attributes. Minor time has the lowest B-W scores and is the attribute with the second lowest standard deviation of B-W.

\(^5\)Simple best-minus-worst scores can be obtained by subtracting the total count of an item being chosen as the worst from the total count the same item being chosen as the best across all BWS choice tasks and across all respondents (Louviere, Flynn, and Marley 2015). Since each attribute appeared 4 times per person in our case, the simple B-W score averaged at the individual-level is between -4 and 4.
scores, indicating that it was universally considered of limited importance. This is understandable as our survey was based in Shanghai and its nearby regions which could be reached by HSR or air from Shanghai within a relatively short period of time.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>B-W score</th>
<th>s.d.</th>
<th>Score ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT (connection time)</td>
<td>0.37</td>
<td>2.00</td>
<td>1</td>
</tr>
<tr>
<td>TC (travel cost)</td>
<td>0.33</td>
<td>2.49</td>
<td>2</td>
</tr>
<tr>
<td>DP (delay protection)</td>
<td>0.29</td>
<td>2.35</td>
<td>3</td>
</tr>
<tr>
<td>TT (transfer time)</td>
<td>0.23</td>
<td>1.77</td>
<td>4</td>
</tr>
<tr>
<td>LI (luggage integration)</td>
<td>0.16</td>
<td>2.61</td>
<td>5</td>
</tr>
<tr>
<td>TI (ticket integration)</td>
<td>-0.47</td>
<td>2.27</td>
<td>6</td>
</tr>
<tr>
<td>MT (minor time)</td>
<td>-0.90</td>
<td>1.77</td>
<td>7</td>
</tr>
</tbody>
</table>

3.4. **BWS Case 2 tasks**

The BWS2 section consisted of 8 tasks, each comprising the attribute levels which constituted the profile of the integrated HSR-air alternative in each SC task. Our BWS2 survey focused on four attributes, i.e. connection time, delay protection, ticket integration and luggage integration, such that each BWS2 task required respondents to select the most appealing and the least appealing from 4 available attribute levels.

Fig. 5 gives an example of the BWS2 tasks, where different levels across different attributes were evaluated on a common scale rather than being compared within an attribute, such that a respondent might prefer “having 50% off on a flight change” over “having an integrated luggage-handling system and one security check”.

![Figure 5. Example of BWS2 tasks.](image)

6The levels were always shown in the order of connection time, delay protection, ticket integration and luggage integration to reduce cognitive burden. Comparisons between levels within a same attribute were not allowed.
Overall, 14 different attribute levels were included in the BWS2 survey as listed in Table 2, including 5 levels of connection time, 3 levels of delay protection, 3 levels of ticket integration and 3 levels of luggage integration.

It should be noted that each item was not necessarily presented to all of the 123 respondents and did not occur with a same frequency. Thus, we calculate normalised B-W scores\(^7\) to show relative attractiveness of the attribute levels among the sample. As shown in Table 3, we can see an increase in the normalised B-W scores as the level goes up for delay protection and luggage integration. However, for ticket integration, the scores are generally low and close to each other, indicating that the three levels of ticket integration were almost equally attractive to the respondents. One interesting thing is that connection time appears to be generally considered less attractive, regardless of which actual value it takes. This is understandable as connection time was considered as the most important factor in the BWS1 tasks, so that the respondents felt all the values of connection time presented in the BWS2 tasks to be unattractive.

4. Case study: Model estimation

4.1. Model specification

The models in this paper were estimated in R using CMC (2017), and 1000 MLHS draws (Hess, Train, and Polak 2006) were used in simulation. This section describes the final specification of the joint ICLV model we have found.

4.1.1. Structural equations

After regressing the BWS1 individual-specific simple B-W scores of each attribute on different socio-demographic characteristics, the adopted structural equations for the 7 latent variables of attribute importance \(\alpha_{nk}\) in Eq. 1 are defined as:\(^8\)

\(^7\)Normalised B-W scores can be obtained by dividing the simple B-W score by the total times of the item being available, such that the score is rescaled between -1 and 1 and can rule out the impact of uneven occurrence of each attribute (Louviere, Flynn, and Marley 2015; Marley, Islam, and Hawkins 2016).

\(^8\)For the sake of consistency, in section 4, parameters on attributes are notated with subscripts of the capital initials of the attributes as shown in Table 1, and parameters on attribute levels are represented with subscripts of the abbreviation of the attribute levels in lower case as listed in Table 3.
<table>
<thead>
<tr>
<th>#</th>
<th>Attribute level</th>
<th>Meaning</th>
<th>Numbers of respondents shown</th>
<th>Times available</th>
<th>Times as the best</th>
<th>Times as the worst</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>conn150</td>
<td>Connection time is 2.5h</td>
<td>123</td>
<td>235</td>
<td>32</td>
<td>53</td>
</tr>
<tr>
<td>2</td>
<td>conn180</td>
<td>Connection time is 3h</td>
<td>111</td>
<td>172</td>
<td>15</td>
<td>83</td>
</tr>
<tr>
<td>3</td>
<td>conn210</td>
<td>Connection time in 3.5h</td>
<td>123</td>
<td>280</td>
<td>25</td>
<td>97</td>
</tr>
<tr>
<td>4</td>
<td>conn270</td>
<td>Connection time is 4.5h</td>
<td>74</td>
<td>162</td>
<td>2</td>
<td>93</td>
</tr>
<tr>
<td>5</td>
<td>conn330</td>
<td>Connection time is 5.5h</td>
<td>87</td>
<td>135</td>
<td>1</td>
<td>103</td>
</tr>
<tr>
<td>6</td>
<td>delay0</td>
<td>No delay protection</td>
<td>123</td>
<td>320</td>
<td>20</td>
<td>155</td>
</tr>
<tr>
<td>7</td>
<td>delay1</td>
<td>50% off on changing flight should missing major-leg flight due to the delay on minor leg</td>
<td>123</td>
<td>319</td>
<td>80</td>
<td>64</td>
</tr>
<tr>
<td>8</td>
<td>delay2</td>
<td>Changing flight for free should missing major-leg flight due to the delay on minor leg</td>
<td>123</td>
<td>345</td>
<td>131</td>
<td>39</td>
</tr>
<tr>
<td>9</td>
<td>tick1</td>
<td>Booking tickets together, no easy collection, fixed-time train on the minor leg</td>
<td>123</td>
<td>379</td>
<td>96</td>
<td>64</td>
</tr>
<tr>
<td>10</td>
<td>tick2</td>
<td>Booking tickets together, easy ticket collection available, fixed-time train on the minor leg</td>
<td>123</td>
<td>324</td>
<td>76</td>
<td>56</td>
</tr>
<tr>
<td>11</td>
<td>tick3</td>
<td>Booking tickets together, each ticket collection available, flexible train on the minor leg</td>
<td>111</td>
<td>281</td>
<td>91</td>
<td>38</td>
</tr>
<tr>
<td>12</td>
<td>lugg0</td>
<td>No luggage integration, security checks required on both minor and major legs</td>
<td>99</td>
<td>138</td>
<td>2</td>
<td>67</td>
</tr>
<tr>
<td>13</td>
<td>lugg1</td>
<td>Integrated luggage-handling system available, security checks required on both minor and major legs</td>
<td>110</td>
<td>448</td>
<td>179</td>
<td>54</td>
</tr>
<tr>
<td>14</td>
<td>lugg2</td>
<td>Integrated luggage-handling system available, one security check required</td>
<td>123</td>
<td>398</td>
<td>234</td>
<td>18</td>
</tr>
</tbody>
</table>
Table 3. Normalised B-W scores for BWS2 data

<table>
<thead>
<tr>
<th>Attribute level</th>
<th>Normalised B-W score</th>
<th>Score ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td>conn150</td>
<td>-0.09</td>
<td>8</td>
</tr>
<tr>
<td>conn180</td>
<td>-0.40</td>
<td>10</td>
</tr>
<tr>
<td>conn210</td>
<td>-0.26</td>
<td>9</td>
</tr>
<tr>
<td>conn270</td>
<td>-0.56</td>
<td>13</td>
</tr>
<tr>
<td>conn330</td>
<td>-0.76</td>
<td>14</td>
</tr>
<tr>
<td>delay0</td>
<td>-0.42</td>
<td>11</td>
</tr>
<tr>
<td>delay1</td>
<td>0.05</td>
<td>7</td>
</tr>
<tr>
<td>delay2</td>
<td>0.27</td>
<td>3</td>
</tr>
<tr>
<td>tick1</td>
<td>0.08</td>
<td>5</td>
</tr>
<tr>
<td>tick2</td>
<td>0.06</td>
<td>6</td>
</tr>
<tr>
<td>tick3</td>
<td>0.19</td>
<td>4</td>
</tr>
<tr>
<td>lugg0</td>
<td>-0.47</td>
<td>12</td>
</tr>
<tr>
<td>lugg1</td>
<td>0.28</td>
<td>2</td>
</tr>
<tr>
<td>lugg2</td>
<td>0.54</td>
<td>1</td>
</tr>
</tbody>
</table>

\[\alpha_{n,MT} = \eta_{n,MT}, \quad (k = \text{Minor Time}) \]
\[\alpha_{n,CT} = \eta_{n,CT}, \quad (k = \text{Connection Time}) \]
\[\alpha_{n,TT} = \eta_{n,TT}, \quad (k = \text{Transfer Time}) \]
\[\alpha_{n,DP} = \eta_{n,DP} + \omega_{DP,\text{male}} \cdot Z_{\text{male}}, \quad (k = \text{Delay Protection}) \]
\[\alpha_{n,TI} = \eta_{n,TI} + \omega_{TI,\text{age}>35} \cdot Z_{\text{age}>35}, \quad (k = \text{Ticket Integration}) \]
\[\alpha_{n,LI} = \eta_{n,LI} + \omega_{LI,\text{age}>45} \cdot Z_{\text{age}>45}, \quad (k = \text{Luggage Integration}) \]
\[\alpha_{n,TC} = \eta_{n,TC} + \omega_{TC,\text{reimbursed}} \cdot Z_{\text{reimbursed}}, \quad (k = \text{Travel Cost}) \]

where \(\eta_{nk} \) follows a standard Normal distribution among respondents. All socio-demographic variables used are rescaled to be centred on 0. We did not find suitable socio-demographics for the determinants of the latent attribute importance of minor time, connection time and transfer time. Thus \(\alpha_{n,MT}, \alpha_{n,CT} \) and \(\alpha_{n,TT} \) are assumed to be purely random.

4.1.2. Choice model on SC data

For normalisation purposes, the alternative-specific constant \(\delta_i \) for the integrated HSR-air alternative is fixed to 0 while the other 3 alternative-specific constants are estimated. We assume \(\tau_{MT} = 0 \) to avoid over-specification since minor time acts as the
base in the MaxDiff BWS1 model and was not included in the BWS2 survey.

Minor time, connection time and travel cost are treated as continuous variables. The remaining four attributes are treated as categorical variables, with the lowest level of each being the base in dummy coding. The sensitivity coefficients for these attributes in the stated choice component in Eq. 3 are denoted in detail as:

\[
\begin{align*}
\beta_{n,MT} &= -e^{\mu_n(-\delta_{n,MT})+\sigma_{MT}\xi_{n,MT}} \\
\beta_{n,CT} &= -e^{\tau_{CT}\alpha_{n,CT}} \cdot e^{\mu_n(-\delta_{n,CT})+\sigma_{CT}\xi_{n,CT}} \\
\beta_{n,tran45&90min} &= -e^{\tau_{TT}\alpha_{n,TT}} \cdot e^{\kappa_{TT,age>45}Z_{age>45}} \cdot e^{\mu_n(-\delta_{n,tran45&90min})+\sigma_{TT}\xi_{n,TT}} \\
\beta_{n,delay1&2} &= e^{\tau_{DP}\alpha_{n,DP}} \cdot e^{\kappa_{DP,male}Z_{male}} \cdot e^{\mu_n(-\delta_{n,delay1&2})+\sigma_{DP}\xi_{n,DP}} \\
\beta_{n,lugg1&2} &= e^{\tau_{LI}\alpha_{n,LI}} \cdot e^{\kappa_{LI,age>45}Z_{age>45}} \cdot e^{\mu_n(-\delta_{n,lugg1&2})+\sigma_{LI}\xi_{n,LI}} \\
\beta_{n,TC} &= -e^{\tau_{TC}\alpha_{n,TC}} \cdot e^{\kappa_{TC,rebursed}Z_{rebursed}} \cdot e^{\mu_n(-\delta_{n,TC})+\sigma_{TC}\xi_{n,TC}}
\end{align*}
\]

such that \(\beta_{n,MT}\), \(\beta_{n,CT}\) and \(\beta_{n,TC}\) measure the marginal utilities, while \(\beta_{n,tran45&90min}\), \(\beta_{n,delay1&2}\), and \(\beta_{n,lugg1&2}\) give the relative utility against the corresponding base levels, which are \(\text{tran0min}\), \(\text{delay0}\), and \(\text{lugg0}\) in respective. The higher two levels for each are merged for estimation in our final specification. The final specification excludes the attribute of ticket integration from the utility function for the SC data, as it was found to contribute little to the utility functions. However, ticket integration is still used in the measurement models. Finally, parameters of \(\kappa_{DP,male}\), \(\kappa_{TC,rebursed}\) and \(\tau_{DP}\) were set to zero in the final specification as they were insignificant.

4.1.3. MaxDiff models on BWS1 data and BWS2 data

For the BWS1 data, all the 7 attributes shown in the SC survey are examined, i.e. minor time, connection time, transfer time, delay protection, ticket integration, luggage integration and travel cost. Minor time acts as the base, with relevant parameters \(\delta_{MT1}\) and \(\zeta_{MT1}\) normalised to 0. For the BWS2 data, connection time, delay protection, ticket integration and luggage integration are the four attributes of interest. Connection time is treated as a continuous variable and \(x_{CT,nm2}\) can take the value of 150min, 180min, 210min, 270min or 330min. The remaining three attributes are regarded as categorical variables, with level \(\text{delay0}\), \(\text{tick1}\) and \(\text{lugg0}\) being the lowest
(base) levels for delay protection, ticket integration and luggage integration in respective. The attribute level $delay0$ is selected as the base in the MaxDiff BWS2 model, with the baseline attractiveness ϕ_{delay0} fixed to 0 for normalisation.

4.2. Estimation results

For comparison, we estimated the corresponding reduced form MMNL model on the SC data alone, i.e. setting $\tau = 0$, $\forall k$ (Vij and Walker 2016). The estimates of the MMNL model are shown alongside the estimates of the choice model component of the joint ICLV model in Table 4. In both models, the travel cost variable was scaled by 6.9, such that the value-of-time is expressed in the $/\text{min}^9$.

The log-likelihood of the choice model component on the SC data of the ICLV model ($LL(SC) = -1060.453$) is slightly inferior to that of the MMNL model ($LL = -1057.396$), which is consistent with the discussions by Vij and Walker (2016). Indeed, the ICLV model needs to explain not only the SC data but also the extra BWS1 and BWS2 data, and it is then impossible for the ICLV model to outperform the reduced form MMNL model. Notwithstanding this, our joint ICLV model appears to provide more behavioural explanations than the reduced form MMNL model does. The τ estimates suggest significant roles of the latent variables in scaling sensitivities for all the non-cost attributes where applicable.

The MMNL model and the ICLV model show similar preference patterns towards attributes. As shown in the upper part of Table 4, the most negative δ_{ca} implies that the car-air alternative is the least preferred option, all else being equal, whereas the air-air alternative (δ_{aa}) and the separated HSR-air alternative (δ_{sha}) are both slightly less preferred compared to the base alternative, i.e. the integrated HSR-air mode. Since Lognormal distributions are used, the more negative the underlying mean parameter $\mu_{ln|\beta_k|}$ is, the smaller in magnitude the median of marginal utility is, which translates into a lower sensitivity to that attribute in the SC tasks. As to the standard deviations $\sigma_{ln|\beta_k|}$, both models detect statistically significant random heterogeneity in sensitivities to all of the attributes. Regarding the direct impacts of socio-demographics in the utility functions, we can see from both models that $\kappa_{TT, age>45}$ is significant at the 95%

9 USD/CNY \approx 6.9 during the period of data collection.
Table 4. Estimates for the reduced form MMNL model and the choice model component of the ICLV model

<table>
<thead>
<tr>
<th></th>
<th>MMNL</th>
<th></th>
<th>ICLV</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>est</td>
<td>t-rat(0)</td>
<td>est</td>
<td>t-rat(0)</td>
</tr>
<tr>
<td>Log likelihood</td>
<td>LL: -1057.396</td>
<td></td>
<td>LL (total): -4445.399</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ_{ca}</td>
<td>-3.210</td>
<td>-7.49</td>
<td>-3.081</td>
<td>-6.91</td>
</tr>
<tr>
<td>δ_{aa}</td>
<td>-0.411</td>
<td>-1.73</td>
<td>-0.439</td>
<td>-2.04</td>
</tr>
<tr>
<td>δ_{sha}</td>
<td>-0.622</td>
<td>-3.30</td>
<td>-0.738</td>
<td>-3.60</td>
</tr>
<tr>
<td>$\mu_{ln(-\beta_{MT})}$</td>
<td>-5.243</td>
<td>-16.51</td>
<td>-5.441</td>
<td>-14.26</td>
</tr>
<tr>
<td>$\mu_{ln(-\beta_{CT})}$</td>
<td>-4.527</td>
<td>-37.69</td>
<td>-4.596</td>
<td>-38.62</td>
</tr>
<tr>
<td>$\mu_{ln(-\beta_{trans})}$</td>
<td>-0.900</td>
<td>-2.44</td>
<td>-1.009</td>
<td>-1.85</td>
</tr>
<tr>
<td>$\mu_{ln(\beta_{delay1&2})}$</td>
<td>-1.342</td>
<td>-2.29</td>
<td>-2.157</td>
<td>-2.42</td>
</tr>
<tr>
<td>$\mu_{ln(\beta_{delay1&2})}$</td>
<td>-0.729</td>
<td>-2.32</td>
<td>-1.096</td>
<td>-2.10</td>
</tr>
<tr>
<td>$\mu_{ln(-\beta_{TC})}$</td>
<td>-4.181</td>
<td>-22.02</td>
<td>-4.265</td>
<td>-14.51</td>
</tr>
<tr>
<td>$\sigma_{ln(-\beta_{MT})}$</td>
<td>-0.558</td>
<td>-4.02</td>
<td>-0.881</td>
<td>-3.62</td>
</tr>
<tr>
<td>$\sigma_{ln(-\beta_{CT})}$</td>
<td>-0.517</td>
<td>-6.11</td>
<td>-0.409</td>
<td>-5.02</td>
</tr>
<tr>
<td>$\sigma_{ln(-\beta_{TT})}$</td>
<td>1.327</td>
<td>5.01</td>
<td>1.028</td>
<td>4.08</td>
</tr>
<tr>
<td>$\sigma_{ln(\beta_{DP})}$</td>
<td>-1.203</td>
<td>-2.12</td>
<td>-1.818</td>
<td>-3.71</td>
</tr>
<tr>
<td>$\sigma_{ln(\beta_{LI})}$</td>
<td>-1.331</td>
<td>-6.35</td>
<td>-1.246</td>
<td>-5.25</td>
</tr>
<tr>
<td>$\sigma_{ln(-\beta_{TC})}$</td>
<td>-0.622</td>
<td>-3.75</td>
<td>-0.486</td>
<td>-2.81</td>
</tr>
<tr>
<td>$\kappa_{TT,age>45}$</td>
<td>1.569</td>
<td>3.73</td>
<td>1.468</td>
<td>2.54</td>
</tr>
<tr>
<td>$\kappa_{DP,male}$</td>
<td>0.000</td>
<td>-</td>
<td>0.000</td>
<td>-</td>
</tr>
<tr>
<td>$\kappa_{LI,age>45}$</td>
<td>0.947</td>
<td>1.57</td>
<td>1.252</td>
<td>2.18</td>
</tr>
<tr>
<td>$\kappa_{TC,reimbursed}$</td>
<td>0.000</td>
<td>-</td>
<td>0.000</td>
<td>-</td>
</tr>
<tr>
<td>τ_{CT}</td>
<td>0.233</td>
<td>2.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>τ_{TT}</td>
<td>0.335</td>
<td>2.59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>τ_{DP}</td>
<td>0.000</td>
<td>-</td>
<td>0.000</td>
<td>-</td>
</tr>
<tr>
<td>τ_{LI}</td>
<td>0.701</td>
<td>4.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>τ_{TC}</td>
<td>0.334</td>
<td>1.21</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
confident interval, suggesting that older respondents are more sensitive to transfer
time and dislike long transfer time more than young people do. Meanwhile, although
\(\kappa_{LI, age>45} \) in the MMNL model is only significant at the 80% confidence interval, we
can still infer from \(\kappa_{LI, age>45} \) in the ICLV model, which is significant at the 95%
confidence interval, that older passengers can derive higher utility from better luggage
integration than young people do.

In the left part of Table 5, the constant \(\delta_1 \) represents the mean of the weight to the
associated attribute among the sample in the BWS1 data. It could be noticed that,
with minor time normalised to 0, connection time, delay protection and transfer time
are positioned at the higher end of the underlying weighting scale, followed by travel
cost and luggage integration. Regarding the scalars in the worst choice stage shown in
the down left of Table 5, \(\lambda_{CT1} \) (\(t-rat(1) = -4.27 \)) is the only one which is significantly
different from 1, suggesting that scaling difference between the worst choice stage and
the best choice stage only exists for the attribute of connection time. Since \(\lambda_{CT1} \) is
much lower than 1, it suggests that the model has less noise in explaining the choices
in the best choice stage than in the worst choice stage for the attribute of connection
time.

<table>
<thead>
<tr>
<th>MaxDiff BWS1</th>
<th>MaxDiff BWS2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\delta_{MT1}) 0 (base)</td>
<td>(\delta_{MT2})</td>
</tr>
<tr>
<td>(\delta_{CT1}) 1.271</td>
<td>(\delta_{CT2}) 4.151</td>
</tr>
<tr>
<td>(\delta_{TT1}) 0.920</td>
<td>(\gamma_{CT2}) -0.015</td>
</tr>
<tr>
<td>(\delta_{DP1}) 1.071</td>
<td>(\phi_{delay0/2}) 2.008</td>
</tr>
<tr>
<td>(\delta_{TI1}) 0.311</td>
<td>(\phi_{delay2/2}) 2.601</td>
</tr>
<tr>
<td>(\delta_{LI1}) 0.738</td>
<td>(\phi_{lugg1/2}) 1.956</td>
</tr>
<tr>
<td>(\delta_{TC1}) 0.899</td>
<td>(\phi_{lugg2/2}) 2.201</td>
</tr>
</tbody>
</table>

The right part of Table 5 shows estimates for the baseline attractiveness of each
attribute level in the BWS2 data. Focusing on ϕ_2, it can be inferred that compared to
ticket integration, delay protection and luggage integration are associated with overall
larger steps in attractiveness when moving from a poorer level to a better level, which
implies that respondents might be indifferent to variations in ticket integration. This is
in line with the discoveries in the SC data and the BWS1 data as well as the preliminary
findings in the normalised B-W scores in the BWS2 data. As to the attribute-specific
scalars shown in the down right of Table 5, only ticket integration $\lambda_{TI/2}$ (t-rat(1)=-
2.42) and luggage integration $\lambda_{LI/2}$ (t-rat(1)=-2.13) are significantly different from 1.
Being smaller than 1, λ_{TI} and λ_{LI} suggest stronger random error in the worst choice
stage for these two attributes than in the best choice stage.

Now we turn to Table 6 to jointly examine all the impact factors of latent attribute
importance in the choice model (i.e. τ) as well as in the two MaxDiff measurement
models (i.e. ζ_1 and ζ_2). The estimation results confirm our hypothesis. Except for τ_{TC},
all the impact factors in the choice model and the measurement models are positive
and significant where applicable. Thus, choices are made in a consistent way across
different types of surveys. An increase in the latent variable would result in a stronger
sensitivity to the associated attribute in the SC data, an increased probability that
the attribute of interest is positioned to the higher end on the weighting scale in the
BWS1 data, and a wider attractiveness gap between levels of the concerned attribute
in the BWS2 data.

An exception arises for travel cost, where τ_{TC} is insignificant ($est=0.334$, t-
rat(0)=1.21), whereas the same latent attribute importance plays a strong and sig-
nificant role in BWS1 tasks ($est=2.210$, t-rat(0)=5.66). It is also worth noting that
delay protection is related to cost as well, and that positive and significant impact
of the corresponding latent attribute importance is found in both the BWS1 and
BWS2 data, but not in the SC data, i.e. as mentioned earlier, τ_{DP} is fixed to 0 in
this final specification as little influence from the latent attribute importance could
be found on scaling the sensitivity to delay protection in the SC data. This implies a
lack of consistency for the attributes related to cost between SC and BWS1/2 data,
which is in accordance with and complements the findings in Balbontin, Ortúzar, and
Swait (2015), where the sensitivity of an attribute related to cost, i.e. rent, was es-
imated to be inconsistent between the SC and BWS2 data. It might be due to the
fact that choices in the SC experiment were made based on detailed choice contexts
and level values of different attributes of each alternative in multi-alternative settings,
while this information was not available in the BWS1 experiment where respondents’
awareness and past experience of each attribute would influence their evaluation of
the attributes (Louviere and Islam 2008; Mueller, Lockshin, and Louviere 2010). In
this context, compared to the other non-cost attributes, it might be more difficult to
assess the importance of the cost-relevant attributes and to trade off between cost and
the other non-cost attributes without knowing the actual levels for all the available
options in the choice set.

Table 6. Estimates in the structural equations and impact factors of latent attribute importance in the choice
model and the BWS1/2 MaxDiff measurement models

<table>
<thead>
<tr>
<th>Structural equations</th>
<th>SC data</th>
<th>BWS1 data</th>
<th>BWS2 data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>est</td>
<td>t-rat(0)</td>
<td>est</td>
</tr>
<tr>
<td>(\omega_{\text{CT}})</td>
<td>-</td>
<td>-</td>
<td>(\gamma_{\text{CT}})</td>
</tr>
<tr>
<td>(\omega_{\text{TT,age}>45})</td>
<td>0.000</td>
<td>-</td>
<td>(\gamma_{\text{TT}})</td>
</tr>
<tr>
<td>(\omega_{\text{DP,male}})</td>
<td>-0.863</td>
<td>-2.71</td>
<td>(\gamma_{\text{DP}})</td>
</tr>
<tr>
<td>(\omega_{\text{TI,age}>35})</td>
<td>0.868</td>
<td>3.97</td>
<td>(\gamma_{\text{TI}})</td>
</tr>
<tr>
<td>(\omega_{\text{LI,age}>45})</td>
<td>1.191</td>
<td>2.66</td>
<td>(\gamma_{\text{LI}})</td>
</tr>
<tr>
<td>(\omega_{\text{TC,reimbursed}})</td>
<td>-0.625</td>
<td>-3.36</td>
<td>(\gamma_{\text{TC}})</td>
</tr>
</tbody>
</table>

Combining the estimates \(\omega\) in the structural equations and the impact factors for
latent attribute importance, the positive \(\omega_{\text{TI,age}>35}\) and \(\omega_{\text{LI,age}>45}\) and the negative
\(\omega_{\text{TC,reimbursed}}\) show that older people think ticket integration and luggage integration
to be of greater importance than young people do, while passengers who get reimbursed
perceive lower importance for travel cost than those who need to pay for the travel
on their own. The negative and significant \(\omega_{\text{DP,male}}\) suggests that male passengers
find delay protection less important than female passengers do. Parameter \(\omega_{\text{TT,age}>45}\)
was fixed to 0 and not estimated in the final specification because of its very low
significance. We can further look back into Table 4, where \(\kappa_{\text{TT,age}>45}\) and \(\kappa_{\text{LI,age}>45}\)
are the only two statistically significant \(\kappa\) parameters. We can therefore deduce that
respondents’ age mainly plays an independently direct role in scaling the marginal
utility of transfer time, whereas age affects the marginal utility of luggage integration
both directly and indirectly via the latent variable. The remaining socio-demographic
characteristics involved in \(\omega\) influence stated choice behaviour mainly through the
Finally, we shed some light on willingness-to-pay (WTP) in the SC data with and without the additional information gained from the BWS1 and BWS2 data in Table 7. We first calculated the distributions of marginal utilities for all the attributes, taking into account of the roles of latent attribute importance and socio-demographic characteristics in the ICLV model and the role of socio-demographic characteristics in the reduced form MMNL model, i.e. marginal utilities are given by $e^{\tau_k \alpha_{nk}} e^{\kappa_k Z_n \beta_{nk}}$ in the ICLV model and by $e^{\kappa_k Z_n \beta_{nk}}$ in the MMNL model. We then calculated the ratio against the marginal utility of travel cost for each of the remaining attributes for each draw, which is taken from the distributions of marginal utilities used in the estimation procedure, enabling us to obtain the WTP distributions for all the attributes except for travel cost through simulation (Hensher and Greene 2003; Sillano and de Dios Ortúzar 2005; Daly, Hess, and Train 2012). We see some differences between the two models here, where we would argue that the ICLV findings are more realistic especially for transfer time. Indeed, in the ICLV model, going from a transfer time of 45 or 90 minutes to a seamless transfer has the same benefit as a reduction in connection time by 81.6 minutes at the mean. In the MMNL model, this would be 122.58 minutes, which seems unrealistic if we assume that transfer time should at best be as important as connection time.

The standard deviations of the three categorical attributes, i.e. transfer time, delay protection, and luggage integration are relatively large in both models. This can be mainly attributed to the long tails of the Lognormal distributed WTP distributions as the marginal utilities for all the attributes follow Lognormal distributions. Hence, apart from regular statistics of mean and standard deviation, we also show the median and interquartile range of each WTP distribution. We can see an overall reduction in the median values, and that the interquartile range decreases for all the attributes except for minor time when we move from the MMNL model to the ICLV model.
<table>
<thead>
<tr>
<th>models</th>
<th>attributes</th>
<th>sensitivities β^*</th>
<th>mean and percentiles of WTP distribution</th>
<th>WTP changes against MMNL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>mean</td>
<td>s.d.</td>
<td>mean</td>
</tr>
<tr>
<td>ICLV</td>
<td>Minor Time</td>
<td>-0.006</td>
<td>0.007</td>
<td>0.54</td>
</tr>
<tr>
<td></td>
<td>Connection Time</td>
<td>-0.011</td>
<td>0.006</td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td>Transfer Time,45&90min</td>
<td>-0.738</td>
<td>1.429</td>
<td>62.72</td>
</tr>
<tr>
<td></td>
<td>Delay Protection lv1&2</td>
<td>0.606</td>
<td>2.981</td>
<td>52.62</td>
</tr>
<tr>
<td></td>
<td>Luggage Integration lv1&2</td>
<td>1.231</td>
<td>5.119</td>
<td>104.63</td>
</tr>
<tr>
<td></td>
<td>Travel Cost</td>
<td>-0.017</td>
<td>0.011</td>
<td>-</td>
</tr>
<tr>
<td>MMNL</td>
<td>Minor Time</td>
<td>-0.006</td>
<td>0.004</td>
<td>0.49</td>
</tr>
<tr>
<td></td>
<td>Connection Time</td>
<td>-0.012</td>
<td>0.007</td>
<td>0.98</td>
</tr>
<tr>
<td></td>
<td>Transfer Time,45&90min</td>
<td>-1.160</td>
<td>3.581</td>
<td>91.80</td>
</tr>
<tr>
<td></td>
<td>Delay Protection lv1&2</td>
<td>0.539</td>
<td>0.975</td>
<td>42.87</td>
</tr>
<tr>
<td></td>
<td>Luggage Integration lv1&2</td>
<td>1.221</td>
<td>2.833</td>
<td>97.05</td>
</tr>
<tr>
<td></td>
<td>Travel Cost</td>
<td>-0.019</td>
<td>0.013</td>
<td>-</td>
</tr>
</tbody>
</table>
5. Conclusions

With growing interest in using best-worst scaling data in addition or as a replacement to traditional stated choice (SC) surveys, this paper has sought to test the consistency amongst respondents’ choice behaviour in SC, BWS1 and BWS2 tasks at the individual level within a single framework.

Informed by the work of Hess and Hensher (2013), we adopt the notion of attribute importance and treat it as a latent variable, which acts as the connection amongst all the three types of data. The attribute-specific latent variable scales the sensitivity of the associated attribute in the choice model on the SC data. Meanwhile, it explains the relative weight of the attribute and the relative attractiveness of attribute levels in the measurement models on the BWS1 data and the BWS2 data respectively.

This research has for the first time collected SC data together with more than one type of BWS data from the same respondents. Our work can provide researchers with practical guidance on applying BWS1 and (or) BWS2 approaches in travel behaviour contexts, and insights of choice behaviour in different types of surveys. By simultaneously estimating on the SC, BWS1 and BWS2 data through the latent constructs of attribute importance in the ICLV model, we are able to examine the correlations of choice behaviour among the different types of tasks at the individual level, which was not addressed in Balbontin, Ortúzar, and Swait (2015), without inducing the risk of endogeneity bias or measurement error which arose in Beck, Rose, and Greaves (2017).

The use of BWS1 and BWS2 data in the measurement models of the ICLV model also provides richer behavioural information than the earlier work by Hess and Hensher (2013), where stated attribute attendance and attribute rankings were used.

Overall, our joint model shows that attribute importance can link the SC, BWS1 and BWS2 data. The estimation results imply that an increase in attribute importance results in a stronger sensitivity to that attribute in the SC tasks, more overall weight to that attribute in the BWS1 tasks, and also wider attractiveness gaps between levels for that attribute in the BWS2 tasks. This is particularly true for non-cost attributes, including connection time, transfer time and luggage integration in our case.

Nevertheless, we have not found similar consistency for cost-relevant attributes, i.e.
delay protection and travel cost, as the corresponding latent variables only impose
significant impacts in the BWS1/2 data but not in the SC data. This is somewhat
understandable as respondents might be more capable of trading off cost against other
attributes in multi-alternative SC settings, whereas their perceived importance of cost
attributes in a BWS1/2 survey is more affected by personal experience etc.

The finding that there is not a one-to-one relationship between the different types
of data can also be due to the fact that selecting the best is different from selecting
the worst, i.e. best choices are made under positive frames whereas worst choices are
made within negative frames (Rose 2014; Giergiczny et al. 2017). Given these results,
we suggest that researchers should not see BWS data as a replacement for SC data in
preference elicitation research. It is of course feasible to use BWS tasks alongside SC
tasks, and this may be especially beneficial if the number of respondents is low.

The present work also has some limitations. Firstly, systematic order effects were
not accounted for in our case study as respondents were all presented with choice
tasks in the order of SC, BWS1 and BWS2. Secondly, due to the limited sample
size, asymmetric preferences between the best choice stage and the worst choice stage
were not considered. Thirdly, also due to the restriction of sample size, we assumed
all the preference variations in the BWS1 and BWS2 tasks were attributed to latent
attribute importance, and did not test whether random heterogeneity irrelevant to
latent variables was present. Furthermore, we could test the non-linearity in sensitivity
parameters on the utility functions for alternatives in the SC data.

Acknowledgements

Fangqing Song acknowledges the support of the China Scholarship Council while
Stephane Hess was supported by the European Research Council through the con-
solidator grant 615596-DECISIONS.
References

Dyachenko, Tatiana, Rebecca Walker Reczek, and Greg M Allenby. 2014. “Models of sequential

methods and applications. Cambridge University Press.

