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1 Introduction

The treatment of heterogeneity across individual decision makers is one of the
key topics of research in choice modelling, as evidenced by many of the chapters
in this book. While part of this heterogeneity can in many cases be linked to
differences in key socio-demographic characteristics across agents, there has long
been a recognition that often a non-trivial share of it cannot be explained in this
manner. A number of reasons exist, on the one hand an inability to capture
all possible socio-demographic characteristics that may be relevant, and on the
other hand the existence of idiosyncratic differences in preferences across decision
makers.

Limiting ourselves to a purely deterministic treatment of taste heterogeneity
can result in a loss of explanatory power, a lack of insights into the true extent of
preference heterogeneity, and, depending on the shape and extent of the omitted
heterogeneity, potential bias in key model outputs. With the significant increase
in performance of personal computers and the availability of easy to use software,
a majority of academic studies as well as a large share of applied work now allow
for some degree of random preference heterogeneity in their models.

The key principle in any model aiming to capture random heterogeneity is
to allow for a distribution in sensitivities across decision makers. Two main
approaches exist, making use of either a discrete or a continuous distribution.
The former generally relies on the notion of individual latent classes of decision
makers, although this chapter also briefly looks at discrete mixtures at the level
of individual coefficients. The latter relies on the specification of a multivariate
continuous distribution for the coefficients in a choice model. In recent years

∗The author wishes to acknowledge the role of Moshe Ben-Akiva, Joan Walker and Dinesh
Gopinath in earlier work (Hess et al., 2009) which led to the developments in Sections 2.2.3 and
2.2.4.
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especially, the continuous specification, often simply referred to as mixed logit
(despite latent class and discrete mixtures also being mixtures of logit models),
has come to dominate in many fields, notably in transport. It should be acknowl-
edged that this chapter focusses solely on continuous mixed logit rather than
probit (cf. Daganzo, 1979), which is seeing a resurgence thanks to the work by
Bhat (2011); Bhat and Sidharthan (2011) - many of the same distinctions dis-
cussed here apply to probit, albeit that the distributional assumptions are stricter
than in mixed logit. Similarly, the latent class discussions focus on a logit kernel,
i.e. not discussing for example latent class probit structures.

The theoretical differences between continuous mixed logit and latent class
logit were set out in detail by Greene and Hensher (2003), with empirical com-
parisons for example in Andrews et al. (2002); Hanley et al. (2002); Scarpa et al.
(2005); Provencher and Bishop (2004); Shen (2009). Aside from providing fur-
ther detail relating to the general structure, notably in terms of the correlation
structure findings of Hess et al. (2009), a key focus of the present chapter is to
look at important developments in latent class models since the work by Greene
and Hensher (2003). First, in the ten years that have passed, a number of an-
alysts have sought to combine the relative advantages of the two structures in
hybrid models. Second, a larger body of (mainly empirical) research has made
use of latent class structures with a view to capturing patterns of heterogeneity
going beyond taste coefficients, looking at information processing, heuristics and
heterogeneity in decision rules. Finally, there have also been further advances in
terms of estimation performance for continuous mixture models in the last ten
years, developments relating to the flexibility of mixing distributions, and grow-
ing use of continuous mixtures for capturing phenomena going beyond simple
taste heterogeneity. Throughout the chapter, we do not seek to come to clear
conclusions as to one model being superior to others, in fact, we rather highlight
that the choice of an appropriate approach may be situation specific, in line with
a number of past empirical comparisons.

2 Contrasts between model structures

2.1 Background methodology

Let Pnit (β) give the probability of individual n choosing alternative i in choice
situation t, conditional on a vector of taste coefficients β. In a multinomial logit
(MNL) model (cf. McFadden, 1974), we have:

Pnit (β) =
eVnit∑J
j=1 e

Vnjt
, (1)
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where J is the total number of alternatives, and where the deterministic utility
Vnit is given by f (xnit, β, zn), which is a function of the attributes of alternative
i as faced by individual n in task t, xnit, the vector of taste coefficients β1,
and the vector of socio-demographic characteristics zn. With ni∗t referring to
the alternative chosen by individual n in choice task t, the contribution by this
individual to the likelihood function (across his/her Tn choices) is simply given
by Ln (β) =

∏Tn
t=1 Pni∗t, where the aim is to find values of β that maximise this

function at the sample level, where simple maximum likelihood (ML) is the most
commonly used approach. In this specification, deterministic heterogeneity is
accommodated through the interaction between the vectors β and zn, allowing
potentially for a mixture between continuous interactions and segmentations. We
now look at the treatment of random heterogeneity in three different approaches.

2.1.1 Continuous mixed logit

The first applications mixing logit probabilities across an assumed continuous
distribution of elements in β are generally credited to Boyd and Mellman (1980)
and Cardell and Dunbar (1980), though widespread use of the model was to take
almost two more decades, largely owing to computational complexity. In-depth
discussions of the resulting model structure are given for example in McFadden
and Train (2000), Hensher and Greene (2003) and Train (2009).

We now allow the vector β to follow a random distribution with parameters
Ω, and the choice probabilities are given by:

Pnit (Ω) =

∫
β
Pnit (β) f (β | Ω) dβ, (2)

where Pnit is the MNL choice probability from Equation 1 and where f (β | Ω)
gives the density function for the vector of taste coefficients β, which could al-
low for some fixed elements as well as correlation between individual random
elements. Clearly, there is also scope for still incorporating deterministic hetero-
geneity through interaction between β and zn, whether at the level of the means
or the dispersion parameters (cf. Greene et al., 2006).

Equation 2 would mean that the taste heterogeneity applies at the level of
individual tasks. In the case of multiple observations per individual, we instead
generally work with the assumption that sensitivities vary across individual de-
cision makers, but stay constant across choices for the same individual, notwith-
standing an interest in additional within-individual heterogeneity in some work
(e.g Hess and Rose, 2009). Following the work of Revelt and Train (1998), we

1The inclusion of any alternative specific constants is not made explicit here.
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then write the likelihood of the observed sequence of choices for decision maker
n as:

Ln (Ω) =

∫
β

[
Tn∏
t=1

Pni∗t (β)

]
f (β | Ω) dβ. (3)

The integral in Equation 3 (and Equation 2) does not have a closed form solution
and the model is typically estimated using maximum simulated log-likelihood
(MSL), i.e. the simulated analog of the ML typically used for MNL, averaging∏Tn
t=1 Pni∗t (β) across a sufficiently large number of draws from f (β | Ω). Im-

provements in computer performance as well as the way in which draws from
f (β | Ω) can be generated to better represent the distribution (see e.g. Bhat,
2001, 2003; Hess et al., 2006) have led to widespread use of the model in many
fields. A growing number of studies also rely on Bayesian techniques, which are
especially useful when the dimensionality of β is large (see Train 2009, chapter
12 for an overview), though much of the work to date has been on datasets with
limited sample size and limited numbers of alternatives.

Before proceeding, it should be noted that this discussion has centred on us-
ing mixed logit to accommodate heterogeneity in sensitivities across respondents,
often referred to as random parameters logit. A mathematically equivalent spec-
ification, referred to as error components logit (cf. Walker et al., 2007), uses the
random terms to capture phenomenae such as correlation between alternatives
or choices, as well as heteroscedasticity. Capturing these effects in a latent class
approach is less straightforward (or even possible), and this is a motivation for
combining the approaches, as discussed later in the chapter.

2.1.2 Simple discrete mixtures

An alternative to the use of continuous distributions for individual elements in β
is to allow for a finite number of possible values for each element in β, with an
associated probability. This gives rise to what is variably called a discrete mixture
model or a mass point logit model, with discussions in Gopinath (1995); Dong
and Koppelman (2003); Wedel et al. (1999); Hess et al. (2007); Train (2008).

Let us assume that β has K different elements, where we allow for Sk different
values for βk, where Sk needs to be specified by the analyst. With different
weights for the different possible values for βk given by πsk, we would then have
that:

Ln (β, π) =

S1∑
s1

S2∑
s2

. . .

SK∑
sK

πs1 · πs2 · . . . · πsK
Tn∏
t=1

Pni∗t (βs1 , βs2 , . . . , βsK ) (4)
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i.e. a weighted average across all the possible combinations of values in β, with
the weight for each combination being given by a product of the respective weights
for the individual elements in β, with π grouping together all individual weights,
where 0 ≤ πsk ≤ 1, ∀s, k and

∑Sk
sk
πsk = 1, ∀k. The likelihood for this model has

a closed form solution and no simulation is thus required in estimation. However,
it can be seen straightaway that even with a low number of elements (K) in β and
modest values for the number of possible values (Sk) for each βk, the number of
combinations rapidly becomes very large and leads to computational complexity
not dissimilar from the estimation of a continuous mixed logit model. As an
example, many applications using mixed logit rely on fewer than say 250 draws
in simulation based estimation even with as many as 5 random coefficients. This
would mean that Pni∗t (β) in Equation 3 would need to be evaluated 250 times.
If we estimated a discrete mixture analog with Sk = 3, ∀k, we would need to
evaluate 243 terms in the weighted sum in Equation 4.

Choosing an appropriate value of Sk ∀k is down to the analyst, and is a
non-trivial task. A key component of this is that in the estimation of discrete
mixture models, in common with latent class structures, we see a rapid explosion
in the number of parameters and the often observed phenomenon of multiple
elements for βk collapsing to the same value, which is especially likely in the
case of strongly peaked distributions. The latter issue can be addressed to some
extent by moving away from simple maximum likelihood estimation and making
use of EM algorithms, with in-depth discussions in Train (2008). In terms of the
explosion in the number of parameters and the question of improvements in fit
justifying such increases, it is wise to move to model fit criteria which penalise the
inclusion of additional parameters more strongly, with typical approaches being
the the Akaike information criterion (AIC) or the Bayesian information criterion
(BIC); see for example Mittelhammer et al. (2000, section 18.5).

2.1.3 Latent class structures

Latent class models have a long tradition in choice modelling. Their development
is often traced back to work by Kamakura and Russell (1989) and Gupta and
Chintagunta (1994), with important work also in Swait (1994), Gopinath (1995)
and Bhat (1997). The heterogeneity in sensitivities across individuals is now
accommodated by making use of separate classes with different values for the
vector of taste coefficients β in each class. The distinction from a simple discrete
mixture as discussed above is that the classes capture joint distribution of the
individual elements in β. Specifically, in a model with S classes, we would have S
instances of the vector β, say β1 to βS , with a possibility of some of the elements
in β staying constant across some of the classes. As with discrete mixture models,
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the number of classes S needs to be specified by the analyst.
A Latent Class model uses a probabilistic class allocation model, where indi-

vidual n belongs to class s with probability πns, and where 0 ≤ πns ≤ 1 ∀n, s and∑S
s=1 πns = 1, ∀n. Latent class models are generally specified with an underlying

MNL model, but can easily be adapted for more general underlying structures
such as nested or cross-nested logit - the same clearly also applies to continuous
mixtures (cf. Garrow, 2004; Hess et al., 2005a) or discrete mixtures.

Let Pnit (βs) give the probability of individual n choosing alternative i in
choice task t, conditional on n falling into class s. The likelihood of the observed
set of choices for n, working on the assumption of intra-individual homogeneity
in sensitivities, is then given by:

Ln (β, π) =
S∑
s=1

πns

(
Tn∏
t=1

Pni∗t (βs)

)
(5)

with Pni∗t (βs) again being given by Equation 1.
In common with the discrete mixture model, no simulation is required in the

estimation of latent class models of the form above, so that for example simple
ML estimation can be used. However, in contrast with the discrete mixture
model, the number of combinations of values is a function only of S and not of
the number of elements (K) in β. The issue of choosing an appropriate value for
S remains.

In the most basic version of a latent class logit model (Kamakura and Russell,
1989), the class allocation probabilities are constant across individuals such that
πns = πs, ∀n. The real flexibility however arises when the class allocation prob-
abilities are not constant across individuals but when a class allocation model
is used to link these probabilities to characteristics of the individuals (Gupta
and Chintagunta, 1994). Typically, these characteristics would take the form of
socio-demographic variables, such as income, age and employment status. With
zn giving the concerned vector of characteristics for individual n, and with the
class allocation model taking on a logit form (this is a common specification
rather than an absolute requirement), the probability of individual n falling into
class s would be given by:

πns =
eδs+g(γs,zn)∑S
l=1, e

δl+g(γl,zn)
, (6)

where δs is a class-specific constant2, γs is a vector of parameters to be estimated
and g (·) gives the functional form of the utility function for the class allocation

2In a model with generic class allocation probabilities, such as in Kamakura and Russell
(1989), only these constants would be estimated.
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model - appropriate normalisation is to be used for both δ and γ. The class
allocation model allows us to probabilistically allocate individuals to different
classes depending on their socio-demographic characteristics.

We have already discussed the issue of the proliferation of parameters above
in the context of discrete mixtures, and the same issues apply in latent class
models. Similarly, estimation with larger numbers of classes can be problem-
atic with parameters collapsing to the same values across classes or some classes
obtaining very small probabilities, and here, the EM algorithm can once again
be one possible solution, discussed in Train (2008) but also earlier on by Bhat
(1997). Nevertheless, it remains almost unavoidable that with a large number
of classes, some of the coefficient values may not be significant across classes, or
lend themselves to easy interpretation.

2.2 Contrasts

This section provides some theoretical contrasts between model structures, fo-
cussing on continuous mixed logit models and latent class structures. This ex-
tends on work by Bhat (1997) who derived elasticity expressions as well as on the
discussions in Greene and Hensher (2003), and complements a substantial body
of empirical comparisons between the structures, for example in Andrews et al.
(2002); Hanley et al. (2002); Greene and Hensher (2003); Scarpa et al. (2005);
Provencher and Bishop (2004); Shen (2009). The evidence in these empirical
comparisons is mixed, highlighting that both models have their advantages and
that the choice of an appropriate structure will depend on the data at hand.

2.2.1 Taste heterogeneity

The main emphasis in discussing mixed logit and latent class logit is on their
ability to capture random heterogeneity across individuals in addition to deter-
ministic heterogeneity such as also allowed for in simple MNL models. The two
structures do this in very different ways, as already outlined in Section 2.1. In the
basic specification of the continuous mixed logit model, the random heterogene-
ity is entirely random, and while such a specification is common in most of the
empirical work, it is clearly possible (and indeed desirable) to link the random
heterogeneity to observable individual characteristics, typically through making
the parameters of the random distribution a function of such characteristics (cf.
Greene et al., 2006). A specification not linking the random heterogeneity to
individual characteristics is similarly possible in a latent class framework (Ka-
makura and Russell, 1989), though here, the typical specification does rely on a
parameterisation of the class allocation probabilities on socio-demographics such
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as in Equation 6, meaning that the class allocation probabilities (and hence the
implied sensitivities) vary also as a function of these individual characteristics.

In both models, the assumptions made at the specification stage can have
important influences on parameter estimates and substantive model results such
as willingness-to-pay measures. It is well documented that the need to determine
which coefficients should be allowed to vary across individuals, and what distri-
butions are to be used is a key issue facing analysts using continuous mixed logit
models. There is a strong influence of these assumptions on model results (see
e.g. Hess et al., 2005b), and while much progress has been made since the discus-
sions by Greene and Hensher (2003) with flexible and non-parametric (Fosgerau,
2006, 2007; Fosgerau and Bierlaire, 2007) distributions, numerous applications
continue to rely on misguided specifications, also in relation to ensuring the ex-
istence of moments for ratios of coefficients (Daly et al., 2012), notwithstanding
the possible solution of working in willingness-to-pay space (Train and Weeks,
2005).

A key limitation of most parametric distributions is a strong shape assumption
and general uni-modality. In theory, the same does not apply with latent class
structures as no assumptions are made on the relationship between the values
for a given coefficient across classes, thus allowing for flexible shapes and multi-
modality. This is often touted as an advantage of latent class models. In practice
however, the decision by the analyst on the number of classes to use has major
implications for the shape of the distribution, and the shape of the true underlying
distribution, for example in terms of the relative importance of different modes,
will have impacts on the ability to retrieve sensitivities in less well represented
parts of the distribution. With both models, the ability to retrieve the true
patterns of heterogeneity in the data thus depends both on the shape of that
heterogeneity and the specification used by the analyst.

2.2.2 Posterior analysis

The estimation of either type of models provides information relating to the sam-
ple level patterns of heterogeneity. By making the parameters of the continuous
distribution in mixed logit models a function of socio-demographics or by incorpo-
rating socio-demographics in the class allocation model in a latent class structure,
we can obtain further insights into the likely location of a given type of individ-
ual on that sample level distribution. This however treats two individuals who
are identical on those socio-demographics as also having identical sensitivities,
contrary to the notion of random heterogeneity. Further insights can be obtained
post estimation in a Bayesian manner, by calculating information relating to a
given individual’s sensitivities on the basis of the sample level model estimates
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and that individual’s observed choices.
In a continuous mixed logit context, these calculations are straightforward,

as discussed for example by Train (2009, chapter 12). Specifically, we have from
Equation 3 that the likelihood of the observed sequence of choices for person n
is given by:

Ln (Ω) =

∫
β
Ln (β) f (β | Ω) dβ. (7)

where Ln (β) =
∏Tn
t=1 Pni∗t (β).

Using Bayes’ rule, we can then rewrite this as:

L (βn | Cn) =
Ln (β) f (β | Ω)

Ln (Ω)
(8)

This gives us the probability of given values for βn, conditional on the observed
choices (Cn) for individual n, where it is important to remember that βn is not
observed but is distributed. It is then straightforward to for example calculate a
conditional mean for βn as:

β̄n =

∫
βn

βnL (βn | Cn) dβn, (9)

with similar calculations to obtain the corresponding variance or other measures.
It is similarly possible to calculate a number of posterior measures from latent

class models. A key example comes in the form of posterior class allocation
probabilities, where the posterior probability of individual n for class s is given
by:

π̂ns =
πnsLn (βs)

Ln (β, πn)
, (10)

where Ln (βs) gives the likelihood of the observed choices for individual n, con-
ditional on class s.

To explain the benefit of these posterior class allocation probabilities, let
us assume that we have calculated for each class in the model a given measure
ws = βs1

βs2
, i.e. the ratio between the first two coefficients. Using wn =

∑S
s=1 πnsws

simply gives us a sample level mean for the measure w for an individual with the
specific observed characteristics of person n. These characteristics (in terms of
socio-demographics used in the class allocation probabilities) will however be
common to a number of individuals who still make different choices, and the
most likely value for w for individual n, conditional on his/her observed choices,
can now be calculated as ŵn =

∑S
s=1 π̂nsws.
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Finally, it might also be useful to produce a profile of the membership in
each class. From the parameters in the class allocation probabilities, we know
which class is more or less likely to capture individuals who posses a specific
characteristic, but this is not taking into account the multivariate nature of these
characteristics. Let us for example assume that a given socio-demographic char-
acteristic zc is used in the class allocation probabilities, with associated parameter
γc, and using a linear parameterisation in Equation 6. We can then calculate the
likely value for zc for an individual in class s as:

ẑcs =

∑N
n=1 π̂nszcn∑N
n=1 π̂ns

, (11)

where we again use the posterior probabilities to take into account the observed
choices. Alternatively, we can also calculate the probability of an individual in
class s having a given value κ for zc by using:

̂P (zcs = κ) =

∑N
n=1 π̂ns (zcn = κ)∑N

n=1 π̂ns
. (12)

2.2.3 Correlation between coefficients

In models without random taste heterogeneity, any correlation in the distribution
of individual coefficients can solely arise as a result of interactions with socio-
demographic attributes and specifically where multiple coefficients interact with
the same socio-demographic characteristics. As an example, one could imagine
a situation where cost sensitivity decreases with income while time sensitivity
increases with income, resulting in negative correlation between the time and
cost coefficients across the sample.

In a continuous mixture model, additional correlation can be accommodated
by specifying a joint distribution for the random taste coefficients. While most
estimation packages allow users to specify multivariate Normal distributions, the
vast majority of continuous mixture applications continue to make use of indepen-
dently distributed taste coefficients, despite the obvious simplification and likely
lack in performance this engenders. Correlation is rarely introduced in models not
based on the Normal distribution, one exception being given in Walker (2001),
while flexible correlation structures in continuous mixtures are also a benefit of
the GMNL specification of mixed logit (Fiebig et al., 2010).

In a latent class model, correlation between coefficients is an inherent char-
acteristic of the model structure as long as the two coefficients in question take
on more than one value across the S classes. As highlighted repeatedly earlier in
the chapter, the nature of the distribution of sensitivities in a latent class model
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is a function of both the estimates of the class specific β vectors as well as the
individual specific class allocation probabilities. A characterisation of these dis-
tributions at the level of individuals should thus use the posterior probabilities to
encompass the information gained from observed choices. Drawing on Hess et al.
(2009), we can then easily see that:

cov (βn1, βn2) = E [(βn1 − E (βn1)) (βn2 − E (βn2))]

= E (βn1 βn2)− E (βn1)E (βn2)

=

S∑
s=1

π̂nsβ1,sβ2,s −

(
S∑
s=1

π̂nsβ1,s

)(
S∑
s=1

π̂nsβ2,s

)
(13)

For ease of notation, let α = β1 and γ = β2 in which case Equation 13 can be
written as:

cov (αn, γn) =
S∑
s=1

π̂nsαsγs −

(
S∑
s=1

π̂nsαs

)(
S∑
s=1

π̂nsγs

)
(14)

A special situation arises when S = 2, in which case the class allocation proba-
bilities have no effect on the sign of the correlation. Indeed, with the notation
from Equation 14, we then have:

cov (αn, γn) = π̂n1π̂n2 [α1 (γ1 − γ2) + α2 (γ2 − γ1)]
= π̂n1π̂n2 [(α1 − α2) (γ1 − γ2)] , (15)

where the sign of cov (αn, γn) only depends on the changes in the two elements
in α and γ across the two classes.

It should be noted that, using Equation 8, we also obtain individual spe-
cific distributions for the coefficients in a continuous mixed logit model, where
any correlation between these will be a function of the choices (leading to the
posterior distributions), the assumptions in relation to the sample level covari-
ance structure, and any incorporation of socio-demographic characteristics in the
specification of the distributions. Unlike with a latent class structure, a simple
analytic solution such as shown here is not straightforward.

2.2.4 Disaggregate elasticities

As a final step, we briefly contrast disaggregate point elasticities in the different
models (see also Bhat, 1997). With both types of mixtures having a logit kernel,
it is worth restating the well known MNL elasticities (see e.g. Ben-Akiva and
Lerman 1985), with the direct elasticity in relation to attribute x given by:

Ei,xni =
∂Vni
∂xni

xni (1− Pni (β)) , (16)
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where, with a linear in attributes specification, ∂Vni
∂xni

= βx. The corresponding
cross-elasticity is given by:

Ei,xnj = −∂Vnj
∂xnj

xnjPnj (β) , (17)

exhibiting the IIA characteristic at the disaggregate level - note this does not
imply IIA in the aggregate elasticities (Louviere et al., 2000).

In a continuous mixed logit model, the direct elasticity (see e.g. Train 2009)
is given by:

Ei,xni =

∫
β
∂Vni
∂xni

xni (1− Pni (β))Pni (β) f (β | Ω) dβ∫
β Pni (β) f (β | Ω) dβ

, (18)

with the cross-elasticity being:

Ei,xnj = −

∫
β
∂Vnj

∂xnj
xnjPnj (β)Pni (β) f (β | Ω) dβ∫
β Pni (β) f (β | Ω) dβ

, (19)

where this varies across alternatives, such that it does not exhibit the IIA prop-
erty. Here, it can be seen that the elasticities are given by an integration of logit
elasticities.

In a latent class logit model, the direct elasticity is given by:

Ei,xni =
∂Pni (β)

∂xni

xni
Pni (β)

=

(
S∑
s=1

πns
∂Pni (βs)

∂xni

)
xni

Pni (β)

=

(
S∑
s=1

πns
∂Vnis
∂xni

Pni (βs) (1− Pni (βs))

)
xni

Pni (β)

=

S∑
s=1

πnsPni (βs)

Pni (β)

[
∂Vnis
∂xni

xni (1− Pni (βs))

]
. (20)

It can be seen that the term in square brackets corresponds to a MNL direct
elasticity for a specific class in the latent class model. This means that the direct
elasticities are a weighted sum of MNL elasticities, with the weights being given by
multiplying the class membership probability with the class specific conditional
probability and by dividing this product by the marginal probability.
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It can similarly be seen that the cross-elasticities are given by a weighted sum
of MNL cross-elasticities, with:

Ei,xnj =
∂Pni (β)

∂xnj

xnj
Pni (β)

=
S∑
s=1

πns

(
−∂Vnjs
∂xnj

Pni (βs)Pn (j | βs)
)

xnj
Pni (β)

=
S∑
s=1

πnsPni (βs)

Pni (β)

[
−∂Vnjs
∂xnj

xnjPnj (βs)

]
. (21)

The contrasts and similarities between the continuous mixed logit and latent class
logit elasticities are clear. Both are a function of MNL elasticities, and both avoid
the IIA assumption. The mixture in the continuous model means a reliance on
integration/simulation, while the latent class model uses weighted summation.
In all of the models, the elasticities vary as a function of the attribute levels of
the alternatives and hence the probabilities, but also as a function of any socio-
demographic interactions with β. In the latent class model, we have the additional
influence of socio-demographics through the class allocation probabilities, where,
in the continuous mixed logit model, the same is the case if the parameters of
the distribution are a function of decision maker characteristics.

3 Combining continuous mixed logit and latent class

The discussion in the previous section has highlighted the contrasts between con-
tinuous mixed logit and latent class logit models. Both structures have strengths
and weaknesses and it should thus come as no surprise that a number of re-
searchers have put forward structures that combine the two approaches.

The first published such application seems to be the work of Walker and Li
(2006), who add additional continuous variation into a latent class structure in the
form of error component terms aimed at capturing correlation across alternatives
and across choices for the same decision maker. Specifically, their model takes
the general form of:

Ln (β, π, σ) =
S∑
s=1

πns

∫
η

Tn∏
t=1

Pni∗t (βs, η) f (η | σ) dη (22)

In this specification, the continuous random components η follow Normal distri-
butions with a mean of zero and with standard deviations captured in the vector
σ. With a view to capturing correlation across alternatives as well as across
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choices for the same decision maker, these error components are generic across
classes within the overarching latent class structure.

A different direction in combining the two structures uses the continuous com-
ponent to allow for additional heterogeneity in sensitivities within given classes,
where this heterogeneity varies across classes. In effect, this can be described
most straightforwardly as a latent class mixed logit, using a continuous mixed
logit model inside each class to capture heterogeneity. In particular, we would
write:

Ln (Ω, π) =

S∑
s=1

πns

∫
βs

Tn∏
t=1

Pni∗t (βs) f (βs | Ωs) dβs (23)

In this model, we have that the vector of coefficients βs is specific to class s and
contains at least some components that are distributed randomly across decision
makers within that class, according to f (βs | Ωs), where Ω = 〈Ω1, . . . ,ΩS〉. Such
a specification has been used by Bujosa et al. (2010) on revealed preference data
(with Tn = 1, ∀n) and Greene and Hensher (2013) on stated preference data.

In a different direction, there has in recent years been growing interest in
allowing for intra-agent heterogeneity in addition to inter-agent heterogeneity
(Bhat and Sardesai, 2006; Hess and Rose, 2009) making use of a specification
such as:

Ln (Ωγ ,Ωα) =

∫
α

Tn∏
t=1

[∫
γ
Pni∗t (β = α+ γ) f (γ | Ωγ) dγ

]
h (α | Ωα) dα, (24)

where β = α + γ with α distributed across decision makers and γ distributed
across individual choices for the same decision maker. Models of this type have
proven to be very difficult to estimate due to the double layer of integration, and
this raises the question whether replacing one layer with weighted summation
through a latent class structure would be beneficial, in essence adapting Equation
23 by moving the position of the integral to the level of an individual choice:

Ln (Ω, π) =
S∑
s=1

πns

Tn∏
t=1

∫
βs

Pni∗t (βs) f (βs | Ωs) dβs. (25)

This specification would now mean that the latent class structure captures the
variation in sensitivities across individual decision makers through the class struc-
ture, while the integration over class specific random coefficients captures addi-
tional heterogeneity across choices for individual decision makers.
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Finally, the focus above has solely been on allowing for additional continuous
random heterogeneity for the choice model parameters within individual latent
classes. However, the drivers of the class allocation model could similarly include
other latent factors (such as attitudes) that should be explicitly captured in the
model specification. Such a specification, as discussed by Walker and Ben-Akiva
(2002) and Hess et al. (2013a), relies on specifying a set of latent variables αn =
h (θ, zn)+ηn where ηn is a vector of standard normal random variables. These αn
terms, which can for example represent underlying attitudes and perceptions, are
then used in parameterising the class allocation probabilities, rewriting Equation
26 to:

πns =
eδs+g(γs,zn)+τsαn∑S
l=1, e

δl+g(γl,zn)+τlαn
. (26)

At the same time, αn is used to explain answers by decision maker n to a set
of attitudinal questions, grouped together in In, with e.g.: In = ζαn + ν where
ν is a vector of random disturbances. The estimation then jointly maximises
the likelihood of the observed choices and answers to the attitudinal questions,
through having:

Ln (β, γ, θ, δ, τ) =

∫
ηn

S∑
s=1

πns

(
Tn∏
t=1

Pni∗t (βs)

)
P (In | αn)φ (ηn) dηn (27)

where πns is now also a function of αn.

4 Confirmatory latent class structures: recent devel-
opments and future research needs

The discussion of latent class models thus far has centred on a form of the model
which is particularly accessible as there are well-established estimation software
programs to estimate such models. This model can be referred to as an ex-
ploratory latent class model - the analyst merely specifies the number of classes
and selects the attributes which are to be used in the class allocation model, and
the rest is left to model estimation. This will, with a suitably robust estimation
approach, lead to a well fitting structure for a model of the specified size, but
there is no guarantee that it will lead to reasonable results or meaningful insights
into behaviour, much the same way as when just estimating a continuous mixed
logit model with standard distributions.

An alternative approach is to use what can be termed a confirmatory ap-
proach, imposing different a-priori restrictions on the specifications of the class
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membership models and on the class specific choice probabilities, and estimat-
ing parameters subject to these constraints. This applies for example when the
latent classes are based on a priori behavioural hypotheses. An example of such
a confirmatory approach is given in Gopinath (1995), while the work by Train
(2008) in the context of estimating weights for fixed points in a distribution is
also an example of a confirmatory approach.

An added reason for discussing confirmatory approaches in the present chap-
ter is a strong stream of research activity making use of such models in two
related but distinct contexts in recent years, namely the domains of information
processing and decision rule heterogeneity.

4.1 Attribute processing strategies

The field of information processing strategies (IPS) or attribute processing strate-
gies (APS) is a burgeoning area of work, especially in the context of stated choice
surveys. The main emphasis has been on the question whether some decision
makers may actually make their choices based on only a subset of the attributes
that describe the alternatives at hand. This phenomenon is typically referred to
as attribute non-attendance or attribute ignoring, and an in-depth review of work
in this area is given in Hensher (2010), and also the Hensher contribution in the
present volume. The interest in this topic in this chapter comes in the context of
ways to accommodate attribute non-attendance in models.

A key role in this area was played by the early discussions in Hess and Rose
(2007), who proposed the use of a latent class approach to accommodate at-
tribute non-attendance, a method since adopted by numerous other studies (e.g.
Hensher et al., 2012; Scarpa et al., 2009; Hensher and Greene, 2010; Hole, 2011;
Campbell et al., 2010). With this approach, different latent classes relate to
different combinations of attendance and non-attendance across attributes. For
each attribute treated in this manner, there exists a non-zero coefficient (to be
estimated), which is used in the attendance classes, while the attribute is not
employed in the non-attendance classes, i.e. the coefficient is set to zero. In a
complete specification, covering all possible combinations, this would thus lead
to 2K classes, with K being the number of attributes, where a given coefficient
will take the same value in all classes where that attribute is included. A simpli-
fication so as to avoid estimating 2K separate class allocation probabilities is to
use a multiplicative approach, i.e. treating non-attendance independent across
attributes, much as in the discrete mixture discussions in Section 2.1.2, and as
discussed in Hole (2011).

In addition to the vector β, we now have a SxK matrix Λ, in which each row
contains a different combination of 0 and 1 elements, where S = 2K . Next, let
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A ◦ B be the element-by-element product of two equally sized vectors A and B,
yielding a vector C of the same size, where the kth element of C is obtained by
multiplying the kth element of A with the kth element of B. Using this notation,
the specific values used for the taste coefficients in class s are then given by the
vector βs = β ◦ Λs. The likelihood for decision maker n is then given by:

Ln (β, π) =
S∑
s=1

πs

T∏
t=1

Pni∗t (βs = β ◦ Λs) . (28)

The overall findings of the growing body of work using the latent class specifica-
tion point towards a significant portion of people ignoring attributes, including
cost variables. In later work, Hess et al. (2013b) argue that an important short-
coming of this simple latent class approach is the reliance on only two possible
values for each coefficient, one of which is fixed to zero, where the latter might
capture sensitivities close to (rather than equal to) zero, while the two class struc-
ture might simply be a proxy for more general taste heterogeneity. Hess et al.
(2013b) put forward a model which combines the confirmatory latent class struc-
ture with additional continuous heterogeneity in the non-zero coefficient values,
aiming to reduce the risk of the class at zero capturing low sensitivities. The
likelihood function for decision maker n is simply rewritten as:

Ln (Ω, π) =

S∑
s=1

πs

∫
β

T∏
t=1

Pni∗t (βs = β ◦ Λs) f (β | Ω) dβ. (29)

Empirical evidence by Hess et al. (2013b) on multiple datasets reveals major
improvements in fit by the specification in Equation 29 over the model in Equation
28, along with a reduction in the implied rates of non-attendance, which crucially
however remains above zero for many attributes. Further work on this structure
was subsequently conducted by Collins et al. (2013).

4.2 Decision rule heterogeneity and other mixtures of models

Although structures belonging to the family of random utility models have come
to dominate, it is important to recognise that alternative paradigms for decision
making have been proposed, for example the elimination by aspects model of
Tversky (1972), but also more recent work based on the concepts of happiness
(Abou-Zeid and Ben-Akiva, 2010) and regret (Chorus et al., 2008). The evidence
in the literature is that which paradigm works best is very much dataset specific.
Hess et al. (2012) put forward the hypothesis that variations in decision rules
may be across decision makers with a single dataset, not just across datasets,
and propose the use of a confirmatory latent class approach in this context.
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Specifically, let Ln (βm,m) give the probability of the observed sequence of
choices for decision maker n, conditional on using a choice model identified as m,
where this uses a vector of parameters βm. The Hess et al. (2012) framework is
based on the idea that M different behavioural processes are used in the data.
The probability for the sequence of choices observed for decision maker n is now
given by:

Ln (β, π) =
M∑
m=1

πnmLn (βm,m) , (30)

where we use different behavioural processes in different classes, with the prob-
ability of decision rule class m for decision maker n given by πnm. Hess et al.
(2012) additionally allow for random heterogeneity in parameters within individ-
ual decision rule classes, such that:

Ln (Ω, π) =
M∑
m=1

πnm

∫
βm

Ln (βm,m) f (βm,Ωm) dβm, (31)

where βm ∼ f (βm,Ωm) and Ωm = 〈Ω1, . . . ,ΩM 〉.
Hess et al. (2012) use the model to allow for mixtures between random utility

maximisation, random regret minimisation and elimination by aspects. In later
work, Hess and Stathopoulos (2012) use an approach as in Walker and Ben-Akiva
(2002) and Hess et al. (2013a), making the class allocation a function of a latent
factor, which in this case also explains decision makers’ real world choices.

At this stage, it should be noted that a latent class model mixing various de-
cision rules is just one example of a wider set of structures that combine different
models. A further possibility for example would be a model using different GEV
nesting structures in different latent classes, somewhat similar in aims to the work
of Ishaq et al. (2013). Finally, a separate body of work looks at using different
choice sets in different classes, in the context of choice set generation work (see
e.g. Swait and Ben-Akiva 1985; Ben-Akiva and Boccara 1995 and Gopinath 1995,
section 2.7).

5 Summary and conclusions

This chapter has revisited the topic of contrasting continuous mixed logit models
and latent class structures, ten years on from the work by Greene and Hensher
(2003). The key distinction between the models clearly remains that the for-
mer uses continuous distributions of sensitivities while the latter uses a finite
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number of classes of sets of coefficient values. Both models allow for deter-
ministic heterogeneity, along with an influence of observed components such as
socio-demographics on the nature of the random heterogeneity, albeit that this
is arguably done less frequently with continuous mixtures. While latent class
models lead to reduced computational costs compared to continuous mixtures,
they are characterised by a rapid increase in the number of parameters. Post
analysis calculations of measures of heterogeneity, correlation and elasticities are
relatively straightforward in both models, again with the distinction between sim-
ulation and averaging across classes, where this chapter provides some additional
insights for correlation in latent class models. A further point not touched on
thus far is that of using the models in application/forecasting, where the compu-
tational cost of latent class models is lower, which is important especially in the
case of micro-simulation uses.

The key motivation for extending on the discussions in Greene and Hensher
(2003) can be found in the many methodological developments that have taken
place in the last ten years. On the continuous mixed logit side, progress has been
made in estimation capabilities, the flexibility of parametric and non-parametric
distributions, and the treatment of phenomena such as inter-alternative correla-
tion and heteroscedasticity. Especially the latter two are not as straightforward
to capture in a latent class framework, and this, along with a desire for more
flexible specifications of heterogeneity, has motivated work on combining the two
approaches, for example in Walker and Li (2006); Bujosa et al. (2010); Greene and
Hensher (2013); Hess et al. (2013b). Similarly, the major interest in modelling
attitudes and perceptions (cf. Ben-Akiva et al., 2002) has led to hybrid mod-
els in which the class allocation is in part driven by these latent psychological
constructs (see e.g. Walker and Ben-Akiva, 2002; Hess et al., 2013a).

The other key focus of the chapter has been the added interest in latent class
structures in recent years in the context of attribute processing strategies (see
the summary in Hensher, 2010) and decision rule heterogeneity (cf. Hess et al.,
2012). A substantial number of studies now make use of confirmatory latent
class approaches which estimate allocation probabilities for classes characterised
by specific behavioural assumptions. With growing interest in ever richer speci-
fications of heterogeneity, the uptake of latent class structures in this context is
bound to increase further, likely in conjunction with continuous layers of hetero-
geneity, especially given the hype of activity on treatments of latent psychological
factors such as attitudes and perceptions, as evidence for example in Hess and
Stathopoulos (2012).

There remains substantial scope for future work in this area, both theoretical
and empirical. A key avenue for work especially with some of the most complex
structures is that of estimation. Notwithstanding the work on EM algorithms by
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Bhat (1997) and Train (2008), issues with dominant peaks in distributions per-
sists, and the importance of starting values is not to be underestimated. Finally,
on the empirical side, substantially more effort needs to go into the specification
of the class allocation models and the search for appropriate observable and latent
drivers of heterogeneity, be it in sensitivities, processing rules or decision rules.
It remains up to the analyst to make an informed choice between the two struc-
tures, where hybrid approaches combining the benefits of both add an important
further level of flexibility.
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